⑴ 数学的学科特点
数学学习的特点:
1.高度抽象性 :数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来 并借助于抽象发展的。
2.严密逻辑性 :数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。
3.广泛应用性:数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。
拓展资料:
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.
因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域.由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗理论解决了,它涉及到域论和群论.
代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法.
空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常着名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学.数和空间在解析几何、微分几何和代数几何中都有着很重要的角色.
在微分几何中有着纤维丛及流形上的计算等概念.在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间.李群被用来研究空间、结构及变化.
⑵ 数学有哪些特点
提问者你好。
数学的抽象,在对象上、程度上都不同于其他学科的抽象,数学是借助于抽象建立并发展起来的.数学的抽象撇开了对象的具体内容,而仅仅保留数量关系和空间形式.在数学家看来,五个石头、五座大山、五朵金花与五条毒蛇之间,并没有什么区别.数学家关心的只是“五”.又如几何中的“点”、“线”、“面”的概念,代数中的“集合”、“方程”、“函数”等概念都是抽象思维的产物.“点”被看作没有大小的东西,无长无宽无高;“线”被看作无限延长而无宽无高,“面”则被认为是可无限伸展的无高地面.实际上,理论上的“点”、“线”、“面”在现实中是不存在的,只有充分发挥自己的空间想象力才能真正理解。
有的同学因数学的抽象而感觉数学枯燥、难学,其实“抽象”是数学的武器,是数学的优势.我们应该喜爱“抽象”,在数学的抽象过程中保留量的关系和空间形式,而舍弃其他一切,学会运用“抽象”的手段来解决问题。
⑶ 小学数学学习 有哪些特点
小学生的数学学习有什么特点?归纳起来有四点。
1.数学学习是一种符号化的数学知识与生活实际经验相结合的学习过程。
数学源于生活又用于生活。上小学之前的幼儿生活中,孩子们已经遇到许多数学问题,已经积累了一些初步的经验。他们玩过各种形状的积木,折过纸工,比过物体大小、长短、厚薄、轻重、宽窄和多少,他们知道几点起床几点睡觉,他们随着父母外出购物等等,所有的活动,都使他们获得了有关数量和几何形体的最初步的观念。虽然这些概念或观念往往是非正规的、不系统的,甚至是模糊的、错误的,但是都为他们上学后学习数学奠定了必要的基础。所以可以这样说,小学生学习数学是以自己经验为基础的一种认识过程,数学对小学生来说是自己对生活中的数学现象的“解读”,这是儿童学习数学与成人不完全相同之处,这也是当前数学课程改革中特别强调要从学生已有的生活经验出发,亲身经历将实际问题抽象为数学模型从而应用的原因。当前数学教学改革的重要策略之一,就是把数学与儿童原有的生活经验密切联系起来,使他们感到数学就在身边,学起来备感亲切、生动、真实,也容易激发兴趣。
2.数学学习是一种不断提出问题、探索问题、解决问题的过程。
问题是数学的心脏。问题对数学学习起着决定性的作用,它决定了思维的方向,也是思维的动因。那么数学问题来自何方呢?一种来自数学本身,即数学内部;另一种则来自数学外部。来自数学内部的问题在小学阶段有很多,例如,学会了20以内的进位加法后,又出现退位减法;懂得有限小数后,在小数除法中又出现了循环小数;知道长方形和正方形周长的求法,但是又遇到要求它们的面积……这些往往是来自数学内部的问题。而更多的是来自数学外部的实际生活中的,这些问题更具有挑战性。例如:
(1)在一个正方形的铁皮中,要想剪出一个最大的圆怎么办?
(2)50人游湖,每条大船可坐6人,每小时租金10元,每条小船可坐4人,每小时租金8元。如果你是领队,打算怎样分配?哪种方案最省钱?
(3)甲乙两商店出售同样的袜子,原价都是每双2元,甲店现打8折出售,乙店买3双送1双。妈妈去哪家商店更合适?
像上面这些具有挑战性的、新奇的问题,对小学生更具有吸引力,他们都愿意通过自己的探索、尝试、分析、合作交流,从而求得问题的答案。因此,数学教学改革的另一个重要策略,是为学生创设各种问题情境,使学生产生认知失衡,从而促使学生主动地去探索和解决问题。
3.数学学习是获取数学知识、形成数学技能和能力的一种思维活动。通过数学学习培养学生的思维能力,尤其培养创新意识是不言而喻的。从这个意义上讲,那些死记硬背、反复而无意义的操练都不能算做真正的数学学习。换句话说,数学学习如果没有学生自己的主动内化(即思考),其学习效果等于零。
根据多年来的实验研究,我们认为小学生的数学思维是在直观行动思维基础上,由具体形象思维为主向抽象逻辑思维为主的过渡阶段。小学生的数学思维是逐步发展的,低年级更多的是具体形象思维;随着年龄的增长,知识的积累,到了中年级,具体形象思维逐步减少,而抽象逻辑成分逐步加大;但是,即使这样,到了五六年级,学生仍然不能像成人那样完全依托着抽象的数学概念进行思维,他们还往往要以具体[---分页---]的表象作为认识的支柱。而且,小学生数学思维的发展过程,也不是单纯的一加一减的关系。在数学学习的过程中,形象思维、初步的逻辑思维,乃至直觉思维往往是相互补充的。
记得20世纪90年代初,我和海淀区教研室为调查低年级学生学习应用题的实际思维水平时,曾对一年级下学期的学生出示这样的测试:“二年级有两个班,这学期一班转走5人,二班转来8人,这学期二年级人数比上学期( )( )人。”这是一种新形式的实际问题。没有现成的模式可以套用,但是学生可以利用原有的知识、方法进行复杂加工把问题解决;这也是一种克服障碍的探究活动。测试结果,大多数学生填不出来。还说:“这题没有告诉我们上学期一、二班有多少人,这怎么算?”而42.7%答对的学生,大致可分三种解题思路:
(1)因为转来的人数比转走的多,8比5多3,所以填(多)(3)人。(这些学生为数很少,他们是利用逻辑推理解题的。)
(2)老师没告诉我们原来一班、二班各有多少人,我就假设。假设原来一班有40人,二班也有40人,那么上学期有40+40=80人;这学期一班转走5人,一班有40-5=35人,二班转来8人,二班有40+8=48人,两班共有35+48=83人;这学期比上学期多3人(83-80=3)。(这部分学生利用原有的知识对新课题进行复杂的加工,采用自己理解的方法——假设法求解,也是值得称道的。)
(3)这题太难了,我就画图
然后这位学生生动地说明自己的思考过程:本来两个班的人数都是“全”的,后来一班转出了5人
二班又转来8人这样从二班的8人中抽出5人去补给一班还剩3人,所以这学期人数比上学期多3人。(这位学生主要是通过形象思维,把抽象的问题具体化,把隐蔽的问题明朗化,而在其最后一步中,从二班的8人中抽出5人去补给一班,则是原来表象基础上的糅合和加工,已具有一些逻辑思维的因素。因此,是形象思维为主,又和初步的逻辑思维交互作用,起到共振的作用,更有其创新的意识。)
通过这一事例,可以说明小学生学习数学也是一种艰苦的思维活动。因此,数学教学中更为学生留下足够的思维空间,使学生学会思考。
4.数学学习是有指导的“再创造”的过程,着名的荷兰数学教育家弗赖登塔尔指出:用自己的思维方式重新构造知识就是再创造。小学生学习数学并不是像有的成人那样的理解——只是停留在概念、法则、定律、方式的弄懂、记牢和背诵,而总是根据他们自己的经验和知识去经历学习过程,用他们自己理解的方法去探索数学知识,当然他们探索的是自己不知而是别人已知的,这就是“再创造”。所以,作为数学教师,应该充分估计学生的潜能,为学生创设更大的思维空间,向他们提供充分的数学活动的机会,引导他们通过自己的观察、实验、思考、交流,用自己理解的方式去探索数学的知识,获得数学技能和数学思想方法,只有这样,才能把培养创新意识的目标落在实处。
⑷ 数学方法具有哪些特点
数学方法即用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言的方法。
数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性.
在中学数学中经常用到的基本数学方法,大致可以分为以下三类:
(1)逻辑学中的方法.例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色.
(2)数学中的一般方法.例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛.
(3)数学中的特殊方法.例如配方法、待定系数法、加减(消元)法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,我们不可等闲视之.
⑸ 估算的作用和意义是什么
估算的作用和意义是为判断计算器、口算和笔算结果是否合理提供了依据;在具体情境中估算,有利于学生提高判断、选择的能力;估算有利于培养学生做事的计划性;估算对学生后续的数学学习有重要作用。
估算的核心在具体情境中选择适当的单位。在对大数进行估计的时候,选择合适的单位也很重要。估计书本的长度时,通常以“厘米”为单位;估计教室的长度时,通常以“米”为单位;教室到学校操场有多远,就应当选用“米”作单位。
而从家到学校有多远,就要选择“千米”作单位。太阳到地球的距离就要用“光年”作单位。教学中,要让学生结合实际熟悉一些常见的计量单位,真正了解其长短,大小和轻重等,并在头脑中建立起相应的表象。
(5)数学估计有什么特点扩展阅读
估算常用的方法有以下几种:
1、凑整的方法:如凑成一个整千、整百、整十的数。
2、取一个中间数:如53、57、51 和59这四个数求和,这些数都很接近35,有的比55多一点,有的比55少一点,就取一个中间数55,直接用55×4,就大约地计算出了这几个数相加的结果。
3、用特殊的数据特点进行估数:如126 × 8,就可以想到125 × 8,125的8倍,就得到1000。
4、寻找区间,也就是说叫寻找它的范围 ,也叫做去尾进一:以278为例,去尾就是只看首位,那么只看首位的时候,估得的结果就是它至少是200;进一就是首位加一,这样就是它最多可能是300,这样得到一个范围,就是寻找它的区间范围;
5、大小协调:两个数,一个数 往大了估,一个数往小了估,或者一个数估一个数不估。
⑹ 理解并解释数学知识有什么特点
数学学科特点:高度的抽象性、结论的确定性和应用的广泛性是数学的特点.要想学好数学必须具备三大能力,即运算能力、空间想象能力及逻辑思维能力,其中逻辑思维能力是核心。运算能力是基础,空间想象能力主要用于立几题中,逻辑思维能力包括,判断能力、逻辑推理能力、数学建模能力以及对数学解的分析能力,
同时学习好数学要抓住“四个三”:
1.内容上要充分领悟三个方面:理论、方法、思维;
2.解题上要抓好三个字:数、式、形;3.阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言);4.学习中要驾驭好三条线:知识(结构)是明线(要清晰),方法(能力)是暗线(要领悟、要提练),思维(训练)是主线(思维能力是数学诸能力的核心,创造性的思维能力是最强大的创新动力,是检验自己大脑潜能开发好坏的试金石。)
方法;一、掌握基础知识。把课本上的知识点全部弄懂弄熟,把课本上的例题,练习题也要研究透彻。二、能够,灵活运用。对于公式、定理、推论要理解透彻,在解题时分析题意,联系相关知识点,运用到解题步骤中。三、举一反三,勿搞题海战。做题不要求多,而要精,只要掌握一种类型的一道题,那么这种类型的其它题就可迎刃而解,万变不离其宗。四、考前复习要有侧重点。I,分值大的主要有函数,圆椎曲线,概率排列组合。分值小的有数列,三角函数,不等式,集合。
数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。
数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。
什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所着的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。
数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。
至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性。