‘壹’ 数学期望中E(XY)表示什么意思呢,求解答
数学期望中E(XY)表示xy相乘的数学期望。
首先x,y都是随便变量,E(x)表示x的“平均”,即数学期望,而现在相当于把xy看成一个数(x,y各自随机取值),然后求(不妨设z=xy),也就是E(Z)=E(XY)。
概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
(1)数学期望中EX中的X代表什么扩展阅读:
离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。
变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数√20,因而k是离散型随机变量。
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。
例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数√20等,因而称这随机变量是连续型随机变量
‘贰’ 数学ex是什么意思
e是自然率,ln是以自然率为底的对数,这个没法举例。lne^n=n
e=(1+1/x)^x,x→∞
就是他们是多少。
他们和log的关系。如何转换。
‘叁’ 期望的期望是什么意思详解是什么我感觉E(x)=μ,为什么E(x的平均值)=μ
期望意思是指人们对某样东西的提前勾画出的一种标准,达到了这个标准就是达到了期望值。数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。
对于EX来说,X是单次抽出一个数据,然后求期望。
对于EX拔来说,X拔是单次抽出n个数据,然后求 平均值(不是期望),然后再对平均值求期望。
至于为什么 EX=EX拔,这不是由定义显然的,而是一个定理,是要证的。
需要注意的是
期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律表明,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
‘肆’ 数学期望,E(X)和E(X^2)有什么区别,什么意思,
区别:
1、数值不同E(X)=E(X),而E(X^2)=D(X)+E(X)*E(X)。
2、代表的意义不同,E(X)表示X的期望,而E(X^2)表示的是X^2的期望。
3、求解的方法不同,E(X^2)的求解为x^2乘以密度函数求积分,E(X)的求解为x乘以概率密度然后求积分。
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
参考资料来源:网络-数学期望
参考资料来源:网络-方差
‘伍’ 概率论里的EX DX分别表示什么
D(X)指方差,E(x)指期望。
E(X)说简单点就是平均值,具体做法是求和然后除以数量。
D(X)就是个体偏离期望的差,再对这个差值进行的平方,最后求这些平方的期望。具体操作是,(个体-期望),然后平方,再对这些平方值求平均值.
D(X)=E[X-E(X)]^2
=E{X^2-2XE(X)+[E(X)]^2}
=E(X^2)-2[E(X)]^2+[E(X)]^2
亲,如果我的回答对您有帮助,请赐个好评吧。谢谢!
‘陆’ x-ex是什么意思
x-ex是什么意思,EX是随机变量X的数学期望,可以理解为X的平均取值,|X-EX|大小可以描述X取值的分散程度,因为有绝对值记号,这会使我们进行解析处理的时候感到麻烦,所以我们用它的平方(X-EX)^2代替|X-EX|来描述X取值的分散程度,但是(X-EX)^2仍然是随机变量,它的取值还依赖于试验,因而我们用它的数学期望E(X-EX)^2代替它,E(X-EX)^2仅依赖于随机变量X,而与随机试验无关,这就是方差的由来。
‘柒’ 数学期望E(x)和D(X)怎么求
数学期望为设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX。即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或方差)。
期望就是一种均数,可以类似理解为加权平均数,x相应的概率就是它的权,所以ex就为各个xi×pi的和。dx就是一种方差,即是x偏差的加权平均,各个(xi-ex)的平方再乘以相应的pi之总和。dx与ex之间还有一个技巧公式需要记住,就是dx=e(x的平方)-(ex)的平方。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
‘捌’ 概率论里的EX DX分别表示什么
D(X)指方差,E(X)指期望。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
在概率论和统计学中,数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
方差与期望相互联系的计算公式如下:
D(X)=E[X-E(X)]^2=E{X^2-2XE(X)+[E(X)]^2}=E(X^2)-2[E(X)]^2+[E(X)]^2
(8)数学期望中EX中的X代表什么扩展阅读:
对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)
若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
‘玖’ x与ex的关系
数值的关系。x与ex就是数值的关系,x是实际的实验测量,反应的是这次实验的真实情况的,而ex是数学期望,就是理论的数值,可以理论分析得到数据。
‘拾’ 指数分布e(x)什么意思
指数分布e(x)是期望值的意思。
比方说:如果你平均每个小时接到2次电话,那么你预期等待每一次电话的时间是半个小时。
这个期望值就是用e(x)来表示的。
一般的说,一个随机变量的函数的期望值并不等于这个随机变量的期望值的函数。
在一般情况下,两个随机变量的积的期望值不等于这两个随机变量的期望值的积。特殊情况是当这两个随机变量是相互独立的时候(也就是说一个随机变量的输出不会影响另一个随机变量的输出)。
在概率理论和统计学中,指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。
这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。
指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。
指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。
即:如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。