Ⅰ 概念教学的方法
概念教学的基本方法:
一、注重概念的来源和形成
数学概念不是简单的由数字推导出的结论,其本质是人类对现实世界空间形式和数量关系的概括反映,是从现实生活中抽象出来的真理。概念的形成过程是通过对系列感性材料进行认识、分析、抽象和概括后得出的。认识任何事物都必须先弄清其来龙去脉,数学概念也同样如此,有了这一前提,既消除了学生对于数学概念抽象、死板的印象,又活跃了课堂氛围,调动了学生学习的积极性。在传统的数学概念教学中,一般采取“概念加例题”的方式,不利于学生对概念的理解。注重概念的来源和形成过程,能够从本质上完整地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。
二、注重概念的变式练习
真正掌握概念必须学会各种变式练习,变式练习既是知识转化为技能的关键途径,也是巩固学习成果的重要方法。变式训练,就是在数学教学过程中对概念、性质、定理、公式,以及问题从不同角度、不同层次、不同情形、不同背景做出有效的变化,使其条件或形式发生变化,而本质特征不变。
三、注重结合生活实例
概念的形成依赖于感性认识,却以理性认识的抽象符号和语言表现出来。根据心理学研究,学生更容易接受具体的感性认识。比如,你描述了若干“圆”的特征,都不如直接拿一个实物来讲解一下容易理解。在数学教学过程中,各种形式的直观教学,是提供丰富、正确的感性认识的主要途径,所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,更容易揭示概念的本质特征。
四、掌握概念是学好数学的基础,在教学中教师应注重引导学生形成良好的概念认知结构,培养学生从概念的联系中寻找解决问题的思路和方法的能力。本文介绍的数学概念教学的方法仅供参考,总的来讲,初中数学概念的教学没有固定的模式,只要我们根据学生的具体情况,从学生的心理出发,用各种生动活泼的教学方式调动起他们的学习积极性,让他们充分参与进来,全方位开发创新思维,就一定会收到事半功倍的成效。
初中数学概念教学的基本方法
2数学概念的主要特征
1)数学概念的组成 数学概念通常由概念的名称、定义、例子、属性和符号组成。如等边三角形这个概念,概念的名称是“等边三角形”(符号是“等边△”),数学概念具有抽象与具体的双重性。 数学概念代表的是一类对象而不是个别事物,它在一定范围内具有普遍意义。如“等边三角形”这个概念代表的是各种颜色、大小抽象的等边三角形,而任何具体颜色、大小的等边三角形都只是它的正面例子。数学概念是数学命题、数学推理的基础成分,就整个一个数学系统而言,概念是个实实在在的东西,这是数学概念具体性的一面。
2)数学概念的概括性强,如“等边三角形”就是对千千万万个具体的等边三角形的高度概括的认识。
3)数学概念的名称往往用特定的数学符号表示,如“等腰△”、“y=sinx”这些符号表示,使数学概念具有形式和简明的特点。
4)数学概念具有系统性。每一数学分支的概念由原名出发,经过不断抽象定义,逐步形成一个严密的概念系统。就某一具体知识而言,相关的概念也组成一个系统。例如,与三角形这一知识相关的概念,边、角、高、中线………组成一个关于三角形概念的系统。
3数学概念教学方法
一、注重利用生活实例引入概念
概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。所以在讲述新概念时,从引导学生观察和分析有关具体实物人手,比较容易揭示概念的本质和特征。
二、注重剖析,揭示概念的本质
数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延。也就是从质和量两个方面来明确概念所反映的对象。
三、注重概念的形成过程
许多数学概念都是从现实生活中抽象出来的。讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。
四、注重通过比较巩固对概念的理解
巩固是概念教学的重要环节。心理学原理认为:概念一旦获得,如不及时巩固,就会被遗忘。巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。
4数学概念有效方式
一、重视学生原有认知结构,拓展联想空间
新概念学习的前提是学生具有良好的认知结构和丰厚的知识积累,必须唤起学生原有认知结构中的有关知识和生活经验。有些教师认为学生已具备了相关知识的储备,没有必要进行复习,结果出现学生对新概念茫然混沌、理解碎裂的状况。在案例教学中,三角函数也是反映两个变量之间的关系,为突出函数的本质,我在教学中引导学生复习已学过的函数,再顺势揭题。
三、经历数学概念思维过程,体验成长快乐 。数学概念的教学就应该成为思维的体操,积极展示思维的发生、发展,从具体到抽象,让概念在条理中、在生动活泼的思维历练中自然生成。课例中,通过问题的设计和不断的探究,让学生体会到在直角三角形中:锐角固定,则这个角的对边与邻边的比值固定。自然得出:锐角变化,则这个角的对边与邻边的比值随之变化。正切概念来之自然、呼之欲出。
二、再现数学概念现实背景,激发学习兴趣
数学来源于生活,服务于生活。庞加莱曾讲过这样一个故事:教室里,先生对学生说“圆周是一定点到同一平面上等距离点的轨迹”,可学生听后面面相觑,谁也不明白圆周是什么,于是先生拿起粉笔在黑板上画了一个圆圈,学生们立即欢呼起来“啊,圆周就是圆圈啊,明白了”,这一故事告诉我们进行概念教学时,教师应从实际出发,创设情境,提出问题,让学生在满腹狐疑中觉得有必要学习这个概念。
四、理解数学概念内涵外延,构建问题模式 。多角度、多变式、循序渐进的安排概念问题的训练是概念固化的关键,这个环节的成功与否直接影响学生的解题能力的提高。案例中,既回归生活(坡面),又对概念的内涵和外延进行了例题设计,强化了对正切概念的本质认识,为下课时正弦、余弦概念的学习打好了基础。
Ⅱ 小学数学概念的表现形式有哪些
数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中中的反映。数学的研究对象是客观事物的数量关系和空间形式。在数学中,客观事物的颜色、材料、气味等方面的属性都被看作非本质属性而被舍弃,只保留它们在形状、大小、位置及数量关系等方面的共同属性。在数学科学中,数学概念的含义都要给出精确的规定,因而数学概念比一般概念更准确。
中文名
小学数学概念
内
容
数的概念、运算的概念
表现形式
描述式和定义式
语
言
小学数学教材
Ⅲ 高中数学概念教学方法有哪些啊谁归纳了吗
一、在体验数学概念产生的过程中认识概念. 数学概念的引入,应从实际出发,创设情景,提出问题.通过与概念有明显联系、直观性强的例子,使学生在对具体问题的体验中感知概念,形成感性认识,通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性.本节课的引入借助多媒体课件播放“神舟”六号运行轨迹,油灌车的截面轮廓线这些有明显联系、直观性强的生活实例,让学生对椭圆有了充分的感性认识,引发学生联想日常生活中类似椭圆型的事物,如鸡蛋、西瓜等,进而引发学生讨论鸡蛋、西瓜是否为椭圆的问题,使学生对即将学习的椭圆内容产生了浓厚的兴趣。二、在知识的“最近发展区”引入概念.数学中有许多概念都有着密切的联系,如何在新旧概念之间联系的基础上掌握概念,苏联教育家维果茨基“最近发展区理论”,为寻找这样的联系提供了有力的理论依据.最近发展区理论认为,教师的教学活动应该在学生的现有发展水平上,激发和启动学生一系列的内部发展过程,让学生通过自己的努力思考,完成相对其现有知识水平而言更高层次的知识水平.这种知识水平是经过学生的努力可以达到的.同时,皮亚杰关于建构主义的基本观点指出:学生是在与周围环境相互作用的过程中,逐步建构起关于外部世界的知识,从而使自身认知结构得到发展的.学生与环境的相互作用涉及两个基本过程:“同化”与“顺应”.同化和顺应,是学习者认知结构发生变化的两种途径或方式.同化是认知结构的量变,而顺应则是认知结构的质变.同化-顺应-同化-顺应……循环往复,平衡-不平衡-平衡-不平衡,相互交替,人的认知水平的发展,就是这样的一个过程.学习不是简单的信息积累,更重要的是包含新。旧知识经验的冲突,以及由此而引发的认知结构的重组.学习过程不是简单的信息输入、存储和提取,是新旧知识经验之间的双向的相互作用过程,也就是学习者与学习环境之间互动的过程.本节课在椭圆的概念引入时,正是基于这些理念.教师让学生回顾“圆的形成”,并且用一根线在黑板上演示圆的形成过程:一条线段绕着一个端点旋转一周所形成的图形.然后由两位学生合作在黑板上演示椭圆的形成过程,同时让学生认真观察,比较“圆的形成”与“椭圆的形成”之间的不同之处:“圆的形成”依靠一个“定点”和一个“定长”,“椭圆的形成”则需要两个“定点”和两条线段和的“定长”来实现,这样学生在“圆的形成”的基础上再向上“跳一跳”就摘到了“椭圆的形成”这棵“桃子”.接着利用多媒体演示椭圆的形成中,对“定长”的探讨,使学生理解当“定长”大于两“定点”间的距离是才能画出椭圆,当“定长”等于两“定点”间的距离时的图形是线段,而当“定长”小于两“定点”间的距离时无法画图形的.在此基础上由学生来叙述椭圆的定义:“平面内与两个定点F1、F2的距离的和等于常数的。
Ⅳ 数学概念有哪些
概念 (mathematical concepts):是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。
在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则
什么是数学数学思想方法有哪些数学思维方法数学数学思维数学是什么数学定理大全数学方法有哪些数学的意义数学思想
概述
正确地理解和形成一个数学概念,必须明确这个数学概念的内涵--对象的"质"的特征,及其外延--对象的"量"的范围。一般来说,数学概念是运用定义的形式来揭露其本质特征的。但在这之前,有一个通过实例、练习及口头描述来理解的阶段。比如,儿童对自然数,对运算结果--和、差、积、商的理解,就是如此。到小学高年级,开始出现以文字表达一个数学概念,即定义的方式,如分数、比例等。有些数学概念要经过长期的酝酿,最后才以定义的形式表达,如函数、极限等。定义是准确地表达数学概念的方式。
许多数学概念需要用数学符号来表示。如dy表示函数y的微分。数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。许多数学概念的定义就是用数学符号来表达,从而增强了科学性。
许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。有些数学概念可以用图形来表示,比如y=x+1的图像。有些数学概念具有几何意义,如函数的微分。数形结合是表达数学概念的又一独特方式,它把数学概念形象化、数量化了。
总之, 数学概念是在人类历史发展过程中,逐步形成和发展的。
数学概念
一、基本概念
1.描述统计。
通过调查、试验获得大量数据,用归组、制表、绘图等统计方法对其进行归纳、整理,以直观形象的形式反映其分布特征的方法,如:小学数学中的制表、条形统计图、折线统计图、扇形统计图等都是描述统计。另外计算集中量所反映的一组数据的集中趋势,如算术平均数、中位数、总数、加权算术平均数等,也属于描述统计的范围。其目的是将大量零散的、杂乱无序的数字资料进行整理、归纳、简缩、概括,使事物的全貌及其分布特征清晰、明确地显现出来。
2.概率的统计定义。
人们在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现"出现正面"或"出现反面"的次数大约各占总抛掷次数的: 左右。这里的"大量重复"是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,其试验记录如下:
可以看出,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率。这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值。
例如100粒种子平均来说大约有90粒种子发芽,则我们说种子的发芽率为90%;
某类产品平均每1000件产品中大约有10件废品,则我们说该产品的废品率为1%。在小学数学中用概率的统计定义,一般求得的是概率的近似值,特别是次数不够大时,这个概率的近似值存在着一定的误差。例如:某地区30年来的10月6日的天气记录里有25次是秋高气爽、晴空万里,问下一年的10月6日是晴天的概率是多少?
因为前30年出现晴天的频率为0.83,所以概率大约是0.83
Ⅳ 小学数学概念教学的几种方法
数学概念是数学教学的重点内容,也是学生必须掌握的重要基础知识之一,是数学基本技能的形成与提高的必要条件。在小学数学教学中,会遇到众多的概念、定律,如果学生能在理解的基础上,掌握正确完整的数学概念,就有助于掌握各种性质、法则、公式等基础知识,有助于各种、能力的形成和提高。但有些学生采用死记硬背的机械方法来记这些概念、定律,这样必然带来解答问题中的生搬硬套,影响学生对知识的理解和应用,也影响学生思维能力的发展和学习积极性的提高。因此,在数学教学过程中,数学概念的教学尤为重要。笔者结合教学实践,就小学数学概念教学的基本方法进行交流和介绍,以期实现共同提高教学效益。
一、以旧引新法
数学中的许多概念,都与旧知识有着内在的联系,教师就要引导学生充分运用旧知识,从中引出新概念来。这样既概括了旧知识,又学了新概念,有利于精讲多练。例如在对“比的基本性质”这一概念教学时,首先将以前学过的除法的基本性质、分数的基本性质进行一次复习和巩固。让学生理解“被除数和除数同时扩大或同时缩小相同的数(零除外),以及分数的分子和分母同时乘以或除以同一个数(零除外),得出的商(分数值)不变。”这两个性质,让学生自己从这两个性质中得出“比的基本性质即比的前项和比的后项都同时扩大(或缩小)相同的倍数(零除外)比值不变。从而达到在复习巩固已学概念的同时,掌握新新概念,并能在学习中灵活地运用新知识和掌握新知识。
二、直观引入法
感知是认识过程的初级阶段,感知所积累的感性材料,是理性认识的基础,缺乏足够的感性材料,思维就不能进行,让学生借助直观的作用形成充分的表象才能有助于概念教学的形成。直观引入法适用于几何形体的概念,整数、分数的概念。数学概念之间不是孤立的,而是存在着各种各样的联系,有相邻的、有相反的、有并列的等等。特别是到了高中年级,随着知识面的不断扩展,概念的不断增多,思维方式从形象思维向逻辑思维过渡,但这种抽象逻辑思维在很大程度上,仍要凭借事物的具体形象或表象来完成。例如,在教学长方体和正方体一单元中棱和面的概念时,如果教师只凭着书本来讲是很难讲清楚的,学生也很难理解和掌握。只要拿一个长方体让学生观察,他们就能清楚地看到棱是由两个面相交的一条边。长方体有几个面,每个面都是长方形的(也可能有两个相对的面是正方形),从而给学生建立起正确、严谨、完整的棱和面的概念,这样既激发了学生学习的兴趣,又调动了学生的学习积极性。
三、区别比较法
在小学数学中,有些概念含义接近,但本质属性又有区别,这类概念学生比较容易混淆,必须把他们加以比较,以避免相互干扰。比较时主要是找出它们的相同点和不同点,是学生看到进行比较对象的内在联系,又看到它们的区别,这样学得概念就更加明确了。如在对于“比”和“比例”这一章节中出现的“比”的基本性质、“比例”的基本性质,学生难以理解,也很容易将二者混淆。为了帮助学生理解和掌握这两个概念,在课堂教学中,教师可以采用区别比较的教学方法,先从“比”和“比例”这两个概念入手,理解两个数相除,又叫做这两个数的比,而这两个数之间的运算关系,“比例”则是两个“比”间的等量关系。“比”是由两个数组成的,而比例则是由四个数构成的等式。如2:3与3:7=9:21,前者是比,后者才是比例。这样学生理解了“比的前项和后项都同时扩大或者都同时缩小相同的倍数(零除外)比值不变”这一比的基本性质后,再来理解“在比例里,两个内项之积等于两个外项之积”,这一比例的基本性质就比较容易了。再如,在进行“质数”与“互质数”的教学时,也可以采用此方法,质数是指根据约数的个数而言的,质数是给某一个数(自然数)下结论。即一个数的约数只有1和它本身,这个数就是质数。而两个数的公约数只有1,这两个数叫互质数。通过区别比较,学生就不会将二者混淆了。
四、情境引入法
马克思曾经说过:“激情、热情是人强烈追求自己对象的本质力量。”所以,教师在课堂教学中,要注意 运用具体事例,去激发学生的求知欲,为学生创设乐学的情境。 如教学“圆的认识”时,可以这样进行:“同学们,我们平时所见的车轮都是什么样的?”学生会肯定地 回答:“都是圆形的。”“方的行不行?”“那怎么行,方的怎么滚动啊?”“这样的行吗?”教师随手在黑 板上画一椭圆形问。“也不行,颠得厉害。”教师再问:“为什么圆的就行了呢?”当学生积极思考时,教师 揭示课题:这节课,我们就来学习解决这个问题的方法。同时板书:圆的认识。这样,一石激起千层浪,短短 几句话,就调动起学生积极探求知识的动力,激起学生学习的情感,使学生一上课就进入学习的最佳状态,取 得事半功倍的效果。
五、计算引入法
有的概念, 与计算有着紧密的关系。因此,可通过计算来引入概念。如通过计算 11 ÷ 3,41 ÷ 33,55 ÷ 6 等发现余数重复出现,商也重复出现,然后引入循环小数的概念;又如通过计算 19 ÷ 7 而引入被除数、除数、商和余数的概念;再如通过计算圆周长与直径的比值,引入圆周率的概念等。
总之,小学数学概念教学方法是多种多样的,只要教师在教学中能教给学生方法,就能做到既教给学生知识,又能培养学生的思维能力,全面提高数学教学质量。
Ⅵ 数学概念引入的途径有哪些
哦,一般数学概念的引入途径,如果是比较好理解的,在生活中有实际例子的,就从生活中引入,没有实际制制制,看是否有前面的知识,有联系的话就从前面的知识印入
Ⅶ 中学数学概念教学的基本方式有哪些
一、情境引导,发现本质 概念是对研究对象的本质属性的概括.而本质属性的概括的过程是一个由感性到理性、由特殊到一般的思维过程,要使学生获得清晰的概念,就要在概念教学中充分开展这样一个过程.按照初中生的年龄特征,要尽量联系学生的实际生活经验引入概念,让学生在不知不觉中对概念潜移默化,而不是照本宣科,死记词句.例如,在教学平面内点的直角坐标的概念时,实质上是建立在平面内点和有序实数对的一一对应关系基础之上.我们可以借助于学生们看电影时找座位等一些学生所熟悉的实例来引入课题,让学生在无意识状态下进入新的概念学习当中,而不是就书认书,硬背概念.当然,要注意这样做的本身并不是目的,它只是实现教学目标的一种手段,是为了用形象的实例来探讨研究对象的抽象本质属性,因而应把精力放在如何把感性认识上升到理性认识这一过程上来.另外,生活实例并不等于数学概念,有的包括非本质属性,而有的遗漏了某些本质属性,因此教者在举例时必须切实,防止学生对概念的曲解,走向另一个极端. 此外,在概念的教学过程中,要在概念的系统中形成概念,而不是突如其来地灌给学生.从原有的概念基础上引入,既要注意从学生已有的知识的基础上引入新概念,又要充分揭示新知识与旧概念的矛盾,使学生认识到旧概念的局限性,学习新概念的必要性.这就要求我们教者在教学前要很好地分析新概念在概念系统中的位置.例如,算术根在教材中的位置,它的前面是方根,后面是根式.它是为了便于研究根式的性质和进行根式的运算,因为正数的平方根有两个值,它们互为相反数.因此研究二次根式的性质只要研究算术平方根的性质就可以了.算术根是为了解决实数范围内方根运算的可行和单值而出现的,从而为研究根式铺平了道路,它在概念系统中起到了承上启下的作用. 二、呈现定义,促进理解 概念的定义是我们所研究对象的本质属性的概括,措辞更是精炼,每个字词都有其重要的作用.为了深刻领会概念的含义,教师不仅要注意对概念论述时用词的严密性和准确性,同时还要及时纠正某些不当及概念认识上的错误,这样有利于培养学生严密的逻辑思维习惯,逐步养成对定义的深入钻研,逐字逐句加以分析,认真推敲的良好习惯. 例如,在讲解等腰三角形概念时,一定要强调概念中的有两条边相等的“有”字,而不是只有两条边相等的“只有”二字.前面的有两条边相等包括了两种情况:一是只有两条边相等的等腰三角形,即腰与底不相等的等腰三角形;二是三条边相等的等腰三角形又叫等边三角形,而后面的仅仅涉及到一种情况,排除了等边三角形也是等腰三角形的这一特殊情况.又如,“a、b、c不全等于零”和“a、b、c全不等于零”,这两条定义字词都一样,只是位置不同,但意义截然不同.再如,不在同一直线上的三点确定一个圆,若改写成三点确定一个圆,得出一个新命题,它既包括了三点在同一直线上也包括了三点不在同一直线上的两种情形,而在同一直线上的三点不可能确定一个圆,即圆上任意三点都不在同一直线上.故将不在同一直线上三点确定一个圆写成三点确定一个圆是不成立的.因此,在讲述此概念时应突出“不在同一直线上”这句话. 三、新旧联系,正反对照 有些概念单纯地讲学生难以接受,难以掌握.但是把某些相关或相对的概念放在一起进行类比、对照,使学生既了解它们之间的联系又注意到它们的区别,会使学生茅塞顿开,另辟蹊径.两个概念之间的关系,可分为相容和不相容两种,相容又可分为同一、交叉和从属三种关系.例如,正整数和自然数是同一关系,平方根和算术平方根是从属关系,方根和根式是交叉关系,矩形和菱形是交叉关系,平行四边形和梯形是不相容关系.又如:讲“仰角”和“俯角”时,将这两个概念进行对照比较,就不难区别谁是“仰角”,谁是“俯角”.再如,“圆心角”与“圆周角”,同学们已经知道了“圆心角”是顶点在圆心的角,由此及彼,大部分学生就可以得出“圆周角”的定义:顶点在圆上的角叫“圆周角”这又恰恰错了.此时教师再将“圆周角”的定义叙述出来,学生就会觉得恍然大悟.这样通过比较“圆心角”与“圆周角”的概念一目了然,清清楚楚. 对数学概念的深刻理解,是提高学生解题能力的基础;反之,也只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延.课本中直接运用概念解题的例子很多,教学中要充分利用.同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻. 四、深入剖析,揭示本质 数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延.也就是从质和量两个方面来明确概念所反映的对象.如,掌握垂线的概念包括三个方面:①了解引进垂线的背景:两条相交直线构成的四个角中,有一个是直角时,其余三个也是直角,这反映了概念的内涵.②知道两条直线互相垂直是两条直线相交的一个重要的特殊情形,这反映了概念的外延.③会利用两条直线互相垂直的定义进行推理,知道定义具有判定和性质两方面的功能.另外,要让学生学会运用概念解决问题,加深对概念本质的理解.
Ⅷ 数学中给概念下定义方法有哪些
什么叫给概念下定义,就是用已知的概念来认识未知的概念,使未知的概念转化为已知的概念,叫做给概念下定义.概念的定义都是由已下定义的概念(已知概念)与被下定义的概念(未知概念)这两部分组成的.例如,有理数与无理数(下定义的概念),统称为实数(被下定义的概念);平行四边形(被下定义的概念)是两组对边分别平行的四边形(下定义的概念).其定义方法有下列几种.
1、直觉定义法
直觉定义亦称原始定义,凭直觉产生的原始概念,这些概念不能用其它概念来解释,原始概念的意义只能借助于其它术语和它们各自的特征给予形象的描述.如几何中的点、直线、平面、集合的元素、对应等.原始概念是人们在长期的实践活动中,对一类事物概括、抽象的结果,是原创性抽象思维活动的产物.直觉定义为数不多.
2、“种+类差”定义法
种+类差”定义法:被定义的概念=最邻近的种概念(种)+类差.这是下定义常用的内涵法.“最邻近的种概念”,就是被定义概念的最邻近的种概念,“类差”就是被定义概念在它的最邻近的种概念里区别于其它类概念的那些本质属性.
例如,以“平行四边形”为最邻近的种概念的类概念有“矩形”、“菱形”,“菱形”的“邻边相等”是区别于“矩形”的本质属性,“邻边相等”就是“菱形”的类差.我们先看几个用“种+类差”定义的例子:
等腰梯形是两腰相等的梯形.
直角梯形是有一个底角是直角的梯形.
等腰三角形是两边相等或两角相等的三角形.
逻辑上还可以通过总结外延给出定义.例如:“有理数和无理数统称为实数”等.
由上述几例可看出,用“种加类差”的方式给概念下定义,首先要找出被定义概念的最邻近的种概念,然后把被定义概念所反映的对象同种概念中的其它类概念所反映的对象进行比较,找出“类差”,最后把类差加最邻近的种概念组成下定义概念而给出定义.种加类差定义法在形式逻辑中也称为实质定义,属于演绎型定义,其顺序是从一般到特殊.这种定义,既揭示了概念所反映对象的特殊性,又指出了一般性,是行之有效的定义方法.由于概念本身的类别特点及类差性质的不同,在叙述形式上也有差异.
这种定义方法,能用已知的种概念的内涵来揭示被定义概念的内涵.揭示了概念的内涵,既准确又明了,有助于建立概念之间的联系,使知识系统化,因此,在中学数学概念的定义中应用较多.
3、发生式定义法
发生定义法(也称构造性定义法):通过被定义概念所反映对象发生过程,或形成的特征的描述来揭示被定义概念的本质属性的定义方法称发生定义法.这种定义法是“种+类差”定义的一种特殊形式.定义中的类差是描述被定义概念的发生过程或形成的特征,而不是揭示被定义概念的特有的本质属性.
例如,平面(空间)上与定点等距离的点的轨迹叫做圆(球).此外,中学数学中对圆柱、圆锥、圆台、微分、积分、坐标系等概念也都是采用的发生式定义法.
又如:
平面内与两个定点的距离的和等于定长的点的轨迹叫做椭圆.
围绕一中心点或轴转动,同时又逐渐远离的动点轨迹称为螺线.
一直杆与圆相切作无滑动的滚动,此直杆上一定点的轨迹称为圆的渐开线.
设 是试验E中的一个事件,若将E重复进行n次,其中A发生了 次,则称 为n次试验中事件A发生的频率.
在一定条件下,当试验次数越来越多时,事件A出现的频率逐步稳定于某一固定的常数P,称P为事件A出现的概率.
由此可知,只要有人类的数学活动,就有概念的发生式定义.
4、逆式定义法
这是一种给出概念外延的定义法,又叫归纳定义法.例如,整数和分数统称为有理数;正弦、余弦、正切和余切函数叫做三角函数;椭圆、双曲线和抛物线叫做圆锥曲线;逻辑的和、非、积运算叫做逻辑运算等等,都是这种定义法.
5、约定性定义法
由于实践需要或数学自身发展的需要而被指定的数学概念.在实践活动中,
人们发现一些概念非常重要,便指明这些概念,以便数学活动中使用.比如一些特定的数:圆周率 、自然对数的底e等;某些重要的值:平均数、频数、方差等;某类数学活动的概括:比如代数指研究有限多元素有限次运算的数学活动;几何指研究空间及物体在空间结构中结构与形式的数学活动;随机事件指在社会和自然界中,相同条件下,可能发生也可能不发生,但在大量重复试验中其出现的频率呈现稳定性的事情;概率指随机事件发生的可能性大小的数学度量;等等.
同时,数学概念有时是数学发展所需要约定的.如零次幂的约定 ,模为零的向量规定为零向量,模为1的向量规定为单位向量.又如矢量积的方向由右手法则规定.数学教学中应向学生灌输这样一种观念,即数学概念是可以约定的(其更深刻的含义是数学可以创造).约定是简约思想的结果,它使得数学因为有了这样的约定而运算简便.约定不是惟一的,但应具有合理性或符合客观事物的规律.如规定矢量积的方向按左手法则也不是不可以的.约定不是随意针对的,一般只约定那些有重要作用的概念,如约定 当n趋于无限大时的极限为自然对数的底e,因为这个数对计算十分重要.
6、刻画性定义
刻画性定义法亦称描述性定义法,数学中那些体现运动、变化、关系的概念经严格地给予表述(逾越直觉描述阶段),这些概念即属于刻画性定义.比如等式函数、数列极限、函数极限等概念.
函数概念:设D是实数集的子集,如果对D内每一个 ,通过给定的法则 ,有惟一一个实数y与此 对应,称 是定义在D上的一元实值函数,记为 概念中刻画了变量y与变量 的关系.
数列极限概念:对于数列{ }和一个数 ,如果对任意给定的正数 ,都存在一个自然数 ,对一切自然数n, ,成立 ,称数n是数列{ }当n趋于无限大时的极限,记为 .概念中刻画了 与 “要多么接近就可以多么接近(只要 )”的程度,使“ 无限接近 ”的直觉说法上升到严格水平.
函数极限概念:对于在 附近有定义的函数 和一个数A,如果对任意给定的正数 ,都存在一个正数 ,对定义域中的x只要 ,成立 ,称数 是 当 趋近于 时的极限,记为 ,概念中刻画了 与A“要多接近就可以有多接近(只要 )”的程度,是严格的数学概念.
7、过程性定义
有些复杂的数学概念是由在实践基础上的数学活动造就的,这样的概念由过程来引导.例如:
导数:设y= 在点 附近有定义.当自变量 取得改变量 ( ≠0),函数 取得相应改变量 ,比值 ,当 时的极限存在,这个极限值就称作 的导数,记作 导数概念通过“作改变量——作商——求极限”的过程获得.
定积分:设有界函数 定义在[ ]上.在[ ]中插入分点: 取 ,作和 令 当 时,和 的极限存在,这个极限值称作 在[ ]上的定积分.定积分概念通过“分割[ ](插入了分点)一作和一求极限”的过程获得.
此外,数学中的概念还有其他给出方式.如n维向量空间的定义:“n为有序实数组( )的全体,并赋予加法与数乘的运算( )+”.它是二维向量空间{ }的类比推广.再如“群”和“距离空间”的概念,则是用一组公理来定义的.公理法定义的方式多用于高等数学,中学中涉及得很少.
此外,中学数学中还有递推式定义法(如"阶行列式、n阶导数、n重积分的定义),借助另一对象来进行定义(如借助指数概念定义对数概念)等等.
上述分类是大致的,学习概念的定义,并不在于区分它究竟属于那种定义方式,而在于理解概念的内涵,把握概念的外延,应用它们去学习数学知识和解决有关问题.
为了正确地给概念下定义,定义要符合下列基本要求:
(1)定义应当相称.即定义概念的外延与被定义概念的外延必须是相同的,既不能扩大也不能缩小.即应当恰如其分,既不宽也不窄.例如,无限不循环小数,叫做无理数.而以无限小数来定义无理数(过宽),或以除不尽方根的数来定义无理数(过窄).显然,这都是错误的.
(2)定义不能循环.即在同一个科学系统中,不能以A概念来定义B概念,
而同时又以B概念来定义A概念.例如, 的角叫做直角,直角的九十分之一,叫做1度,这就发生循环了.
(3)定义应清楚、简明,一般不用否定的形式和未知的概念.例如,笔直笔直的线,叫做直线(不清楚);两组对边互相平行的平面平行四边形(不简明);不是有理数的数,叫做无理数(否定形式);对初中生来说,在复数a+ i中,虚部6—0的数,叫做实数(应用未知概念)等,这些都是不妥的.
Ⅸ 数学定义方法
数学概念的定义方式
一.给概念下定义的意义和定义的结构
前面提到过,概念是反映客观事物思想,是客观事物在人的头脑中的抽象概括,是看不见摸不着的,要用词语表达出来,这就是给概念下定义。而明确概念就是要明确概念的内涵和外延。所以,概念定义就是揭示概念的内涵或外延的逻辑方法。揭示概念内涵的定义叫内涵定义,揭示概念外延的定义叫做外延定义。在中学里,大多数概念的定义是内涵定义。
任何定义都由被定义项、定义项和定义联项三部分组成。被定义项是需要明确的概念,定义项是用来明确被定义项的概念,定义联项则是用来联接被定义项和定义项的。例如,在定义“三边相等的三角形叫做等边三角形”中,“等边三角形”是被定义项,“三边相等的三角形”是定义项,“叫做”是定义联项。