❶ 小学数学中对学生转化思想的培养方法有哪些
转化思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。也就是说,转化方法的基本思想是在解决数学问题时,将待解决的问题,通过某种转化过程,归结到一类已经解决或者比较容易解决的问题,然后通过容易问题还原解决复杂的问题。将有待解决或未解决的问题,转化为在已有知识的范围内可解决的问题,是解决数学问题的基本思路和途径之一,是一种重要的数学思想方法。
小学是学生学习数学的启蒙阶段,这一阶段让学生真正理解并掌握一些基本的数学思想便显得尤为重要。转化思想是数学思想的重要组成部分。它是从未知领域发展,通过数学元素之间的因果联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。在小学数学中,主要表现为数学知识的某一形式向另一形式转变,即化新为旧、化繁为简、化曲为直、化数为形等。21世纪的数学教师,应该结合相应的数学情景,培养学生善于和习惯利用转化思想解决问题的意识。使复杂的问题简单化、抽象的问题具体化,特殊的问题一般化,未知的问题已知化,提高学生解决数学问题的能力,从而使学生爱上学数学。
1.计算的纵向转化
加减计算: 20以内数的加减←―100以内数的加减←―多位数的加减←―小数加减 ← 分数加减 。其中 20以内数的加减计算是基础。如23+15可以转化成2+1和3+5两道十以内数的计算,64-38 可以转化成14-8和5-3两道计算。多位数计算也同样。
分数加减计算如 7/8+3/8 就是 7个1/8 加3个1/8 ,就是(7+3)个1/8 ,最后也可以看作是20以内数的计算。乘除计算:一位数乘法← 多位数乘法← 小数乘法。一位数乘法口诀是基础,多位数乘法都可以把它归结到一位数乘法。除数是一位数的除法←―多位数除法←-小数除法。除法中除数是一位数除法的计算方法是基础,多位数除法都可以把它归结到一位数除法。 2.计算的横向转化
加法与减法之间可以转化,乘法与除法之间可以转化。几个相同加数连加的和,可以转化成乘法来计算。被减数连续减去几个相同的减数,差为零,可以转化成除法来表示。分数的除法,可以将除数颠倒位置变成乘法进行计算。
3.图形中的转化
面积计算公式的推导可以把长方形面积公式作为基础,其它图形面积公式都可以通过转化变成长方形或平行四边形后得出公式。体积计算公式以长方体的体积计算公式为基础,圆柱体的体积公式的推导也是通过转化为长方体来得出。转化思想是解决数学问题的一种最基本的数学思想,在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题,我们也常常在不同的数学问题之间互相转化,可以说在解决数学问题时转化思想几乎是无处不在的。
❷ 浅谈在数学教学中,怎样运用化归思想
数学思想方法是联系知识和能力的纽带,是数学科学的灵魂。为了提高教学质量,使学生更好地理解数学知识、获取解决问题的有效策略,我们必须重视数学思想方法的教学。
化归方法是数学中最基本的思想方法之一。它是指数学家们把待解决的问题通过某种转化过程,归结到一类已经解决或者比较容易解决的问题中,最终获得原问题的解答的一种手段和方法。在小学数学中蕴藏着各种可运用化归的方法进行解答的内容,我们在教学中可逐步渗透这种思想方法,让学生逐步领悟直至到高年级能进行简单的应用。
笔者现在担任教学的两个班是从二年级开始带起的,在这几年的教学过程中我进行了化归方法的渗透教学,到五年级时,我发现学生已能自然地想到使用它来解决数学问题了。我在教学中深刻体会到化归方法的是一种行之有效的思想方法,它有着较为广泛的用途,掌握了它将使我的学生们终身受益。以下是笔者的一些探索和心得:
一、寻找生长点,化未知为已知。
在学习新知时,我总是先启发学生从自己已有的知识中设法去寻找与新知识的相似之处,将新问题中陌生的形式或内容转化为比较熟悉的形式和内容。例如:数的大小比较学生从低年级起就学习了,随着对数的研究的不断深入,学生要进行两位数与三位数、万以内的数、多位数以及小数、百分数、分数的大小比较。刚开始学整数的大小比较时,我就让学生搞清:每个数位上的数字所表示的含义是不同的,因为计数单位不同。接着我再让他们理解整数的大小比较的基本方法:位数多的数比较大(计数单位大);相同位数的数,先从高位比起(计数单位最大的数位上的数比起),依次比较,直到比出大小来。有了这些基础知识的铺垫,学生在学习“万以内数的大小比较”一课时,已能通过老师的启发、同学的讨论和自己的思考来解决例题了。
学习“小数的大小比较”一课时,学生能借助于自己的旧知解决整数部分的大小比较,小数部分的大小比较学生又有小数的意义为支点,理解了小数与整数大小比较的方法的相似性以及旧知识的铺垫,学生自然地将“小数的大小比较”化归为类似“整数的大小比较”问题,这一内容很快在学生的思考与讨论中解决了。
小学数学教材中经常有类似的内容出现,找出新知识与旧知识的相似之处,找准知识的生长点,就能将未知的内容化归为我们熟悉的内容,学生在化归方法的渗透过程中也渐渐地学会了思考问题的方法。
二、掌握规律,化繁为简。
随着年级的升高,对数学知识的不断深入,在学习过程中学生们所遇到的问题也越来越复杂。而化归方法却可使比较复杂的形式、关系结构变为比较简单的形式和关系结构,这种方法的有效性在中、高年级时表现的更为突出。
在中年级时,学生就开始接触到一些平面图形的面积问题。学生在学习了长方形面积公式之后,通过剪、拼、割、补等方法相继得到了平行四边形、三角形以及梯形的面积公式,这时学生对化归方法已有了朦胧的认识。有了这样的学习经验的,接下去在高年级求组合图形面积或较复杂的图形面积时,学生自然地想到了通过分割或拼接的方式也将它们化归为已学过的图形,然后得到其面积的方法。
三、拓展思路,化难为易。
高年级学生学过的数学知识逐渐丰富起来,在我的不断鼓励之下,学生们遇到问题总是喜欢做一做、想一想、议一议,然后在自己的独立思考过程之后大胆提出看法。随着化归思想方法的不断渗透,学生们认识到几乎所有的难题经过老师的启发或同学之间的讨论,看清其实质,总能化归为比较简单的问题来解决。这种思想方法也就在他们解题时经常被想到。
《新课程标准》要求教师鼓励学生独立思考,引导学生自主探究、合作交流。在实际教学中我正是这么做的。学生对数学的学习越深入,对于问题的理解和思考方法也越来越多样化。在课堂上,许多同学都争先恐后地发表自己的意见,还能对自己的观点进行合理地解释。例如:在学习了相关的内容之后,教材中出现了1/5<( )<1/4,要求填写出合适的分数。我知道这是一道很有挑战性的习题,答案不是唯一的,学生们如果能灵活应用已有的知识就可以轻松得到答案。于是,我就将这道题交给学生,让他们自己想办法来解决。学生们刚开始面对它时紧锁眉头,接着他们或低头沉思,或埋头计算,或小声议论,经过了一段时间的思考、酝酿,他们都自信满满地举起了手。学生们根据自己对题意的理解将它化归为以下题目:①同分母分数的大小比较。8/40<(9/40)<10/40 ②异分母分数的大小比较。2/10<(2/9)<2/8 ③两位小数的大小比较。0.2<0.24(6/25)<0.25 ④大数(小数)接近法。1/5<(23/100)<25/100或<5/25<(6/25)<1/4。
对于学生们获得的这些答案,我感到非常满意,不仅因为他们都按自己的思路大胆地去尝试获得了成功,而且他们都想到了利用化归的思想方法将难题转化为较简单的问题,然后合理利用旧知来灵活解决。说明几年潜移默化的教学已经深入人心,他们开始自觉地想到和应用它了,这正是我的教学目标之一。
波利亚说:“完善的思想方法,犹如北极星,许多人通过它而找到了正确的道路。”化归思想方法在新知识学习、问题解决和知识结构梳理等方面都有重要的应用。它能帮助学生化未知为已知,化难为易,化繁为简,化曲为直。这种思想方法的渗透和简单应用的教学不仅对学生现在的学习具有辅助和促进作用,我想在他们未来的工作和学习将有更加广泛的应用。
我在将来的教学过程中将一如既往地进行其他数学思想方法的渗透和简单应用,把它们与数学知识有机结合起来,帮助学生学好知识,进而优化他们的知识结构,提高学生的数学素养。
❸ 谈谈在小学数学教学中如何运用转化思想
小学数学修订后的课标在原来“双基”的基础上,提出了“四基”,即基础知识、基本技能、基本思想和基本活动经验。 小学数学思想方法许多,基本的数学思想方法有:转化思想方法、分类思想方法、集合思想方法、统计思想方法、假设思想方法、对应思想方法、比较思想方法、符号化思想方法、类比思想方法、数形结合思想方法、极限思想方法、代换思想方法、可逆思想方法以、化归思想方法、变中抓不变思想方法、数学模型思想方法、整体思想方法等,结合本周教学比武中的课例谈谈数学教学中渗透转化思想方法:
1.化新为旧。根据学生已有的新旧知识的联系,将新知识转化为已有的知识来解决。
如:赖传淇老师执教的《通分》一课中,出示2/5○1/4,进行比较大小。异分母分数大小的比较对学生来说是新的知识,学生不会比较,老师启发学生将新的知识转化成已学过的知识进行解决这个问题。学生进行小组讨论,然后进行汇报,生1:根据分数的基本性质,把这个两个分数化成分母相同的分数,2/5=8/20,1/4=5/20,因为8/20>5/20,所以2/5>1/4;生2:把2/5和1/4这两个分数都化成已学过的小数,2/5=0.4,1/4=0.25,因为0.4>0.25,所以2/5>1/4;生3:根据分数的基本性质,把2/5和1/4这两个分数的分子化成相同,2/5○1/4=2/8,因为2/5>2/8,所以2/5>1/4;生4:将2/5和1/4用线段来表示,画一条长20厘米的线段,平均分成5份,取其中的2份,这两份长8厘米,也就是这条线段总长的2/5,再画一条长20厘米的线段,平均分成4份,取其中的1份,这一份长5厘米,也就是这条线段总长的1/4,因为8厘米>5厘米,所以2/5>1/4。学生运用了化新为旧的转化思想解决了新知。
又如:郭秋妹老师执教的《两位数乘两位数》一课中,学生列出算式24×12后,问学生可以用什么方法计算?学生回答可以用估算、口算、笔算。师问如何口算24×12,学生一时愣住了,郭老师进行引导,可以将它转化成已学过的。学生开始尝试做,不一会儿学生纷纷举手回答。生1:24×3×4=288,把12拆成3×4,就变成已学过的两位数乘一位数的了24×3=72,72×4=288;生2:24×2×6=288;生3:12×4×6=288;生4:12×3×8=288;生5:把24看成20和4的和,20×12=240,4×12=48,240+48=288;生6:把12看成10和2的和,24×10=240,24×2=48,240+48=288;生7:把12看成9和3的和,24×9=216,24×3=72,216+72=288……学生运用了化新为旧的转化思想解决了新知,发散了思维。
2.化难为易。如:蒋友成老师执教的《数学思考》一课中,出示一题20个点最多可以轻连几条线段?学生一时也无从下手,老师进行引导,将问题化难为易,化大为小,化多为少,将20点转化为1,2,3,4,5点,分别能画几条线段?让学生动手操作、小组讨论。然后学生汇报:点数1,条数0(条);点数2,条数1(条);点数3,条数1+2=3(条);点数4,条数1+2+3=6(条);点数5,条数1+2+3+4=10(条)。让学生观察、分析条数与点数的关系,学生通过观、分析、小组讨论发现:条数的计算方法是从1加2加到点数减1的和。学生发现这个规律后,再来解答20个点最多可以轻连几条线段就轻而易举了,学生就很快的说出算式1+2+3+4+……+19=190(条)。师生进行小结:遇到难的题目,可以将它转化为容易的,简单的来解决,接着找出规律,然后运用规律解决较难的题目,这就是运用了化难为易的转化思想方法。
3.化数为形。如:在计算1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512中,通过引导学生化数为形,画一个正方形, 1/2涂上色,空白的也是1/2,涂色部分可以用1减去空白的;接着在空白的1/2上再涂色一半,涂色部分就是1/2+1/4,涂色部分可以用1减去空白的, 涂色部分就是1-1/4,接着在空白的1/4上再涂色一半,涂色部分就是1/2+1/4+1/8,涂色部分可以用1减去空白的, 涂色部分就是1-1/8。从刚才的过程可以发现规律,涂色部分可以用1减去空白的,因此,1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512=1-1/512=511/512。通过化数为形,可以把这个算式转化成1-1/512=511/512。
4.为曲为直。如:圆的面积公式的推导,就要用到化曲为直的思想方法,通过将圆分割成若干等份,拼成近似的长方形,由圆的半径与面积的关系转化为长方形的长宽与面积的关系,由长方形的面积公式,推导出圆的面积的公式。这里,就是将长方形的面积公式转化为圆的面积公式。在学习圆柱的体积计算时,学生也能很快悟到立体图形之间的联系,感悟到圆柱体积的计算公式。
陶行知先生曾说过:“我以为好的先生不是教书,不是教学生,乃是教学生学。”任何功课最终的目的就是要达到不需要教,需要有会学习的能力、会学习的方法,而数学思想的形成及运用就会产生好的方法,就会提高学习的能力,就会为不教奠定基础。因此,小学数学教师要拓展视野,在教学中渗透数学思想,为学生的终身发展奠基。
❹ 如何在小学数学教学中渗透转化思想
如何在小学数学教学中渗透转化思想。
日本着名教育家米山国藏指出:“学生所学的数学知识,在进入社会后几乎没有什么机会应用,因而这种作为知识的数学,通常在走出校门后不到一两年就忘掉了。然而不管他们从事什么工作,唯有深深铭刻于头脑中的数学思想和方法等随时地发生作用,使他们受益终身。”小学是学生学习数学知识的启蒙时期,这一阶段注意给学生渗透基本的数学思想便显得尤为重要。
转化思想是解决数学问题的一个重要思想。任何一个新知识,总是原有知识发展和转化的结果。它可以将某些数学问题化难为易,另辟蹊径,通过转化途径探索出解决问题的新思路。在教学中我们教师应结合恰当的教学内容逐步渗透给学生转化的思想,使他们能用转化的思想去学习新知识、分析并解决问题。那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。
一、 在教学新知识时渗透转化思想
例:在教学“异分母分数加减法”一课时,我是这样设计的。
1、在情境中产生关于异分母分数加减法的问题,引入异分母分数加减法的学习。
2、让学生独立思考,尝试计算异分母分数加法。
3、小组交流异分母分数加法的方法。整理并汇报。
方法1:将两个异分母分数都变成小数,再相加。
方法2:将两个异分母分数都通分变成同分母分数后,再相加。
4、归纳整理,渗透转化思想
思考以上两种方法,你有什么发现?(两种方法均是将异分母分数转化成已学过的知识,即将异分母分数转化成与其相等的小数或同分母分数之后,再相加。)……
5、回顾反思,强化思想
回顾本节课的学习,谈谈你的收获和体会。(在转化完成之后及时的反思,是对转化思想的进一步巩固与提升——进入思想的内核,再次深刻理解。)
在我们小学数学教材中,像这样,需教师巧妙地创设问题情境,让学生自主产生转化的需要来学习新知识的例子很多,需要我们教师深入分析教材,理解教材,进而挖掘出其蕴含的转化思想。
二、在数学公式推导过程中渗透转化思想
如平行四边形、三角形、梯形等图形的面积公式推导,它们均是在学生认识了这些图形,掌握了长方形面积的计算方法之后安排的,是整个小学阶段平面图形面积计算的一个重点,也是整个小学阶段中能较明显体现转化思想的内容之一。教学这些内容,一般是将要学习的图形转化成已经学会的图形,在引导学生比较之后得出将要学习图形的面积计算方法。随着教学的步步深入,转化思想也渐渐浸入学生们的头脑中。
如平行四边形面积推导,当教师通过创设情境使学生产生迫切要求出平行四边形面积的需要时,可以将“怎样计算平行四边形的面积”直接抛向学生,让学生独立自由地思考。这个完全陌生的问题,需学生调动所有的相关知识及经验储备,寻找可能的方法,解决问题。当学生将没有学过的平行四边形的面积计算转化成已经学过的长方形的面积的时候,要让学生明确两个方面:
一是在转化的过程,把平行四边形剪一剪、拼一拼,最后得到的长方形和原来的平行四边形的面积是相等的(等积转化)。在这个前提之下,长方形的长就是平行四边形的底,宽就是高,所以平行四边形的面积就等于底乘高。
二是在转化完成之后应提醒学生反思“为什么要转化成长方形的”。因为长方形的面积我们先前已经会计算了,所以,将不会的生疏的知识转化成了已经会了的、可以解决的知识,从而解决了新问题。在此过程中转化的思想也就随之潜入学生的心中。其他图形的教学亦是如此。需要注意的是转化应该成为学生在解决问题过程中的内在的迫切需要,而不应该是教师提出的要求,因为这样,学生的操作、思考都将处于被动的状态,对转化的理解则可能浮于表面。
三、在数学练习题中挖掘转化思想
在三角形内角和教学后,书中有一练习题,“求出四边形和正六边形的内角和是多少?”这一问题的解决完全依赖于转化思想,即:把四边形和正六边形都转化成若干个三角形的和。即连接对角线把四边形转化成两个三角形,那么四边形内角和就等于两个180度,即360度。而正六边形通过连接对角线转化成了四个三角形,则内角和是四个180度,即720度。教师在处理习题时,不能仅仅教给学生解题术,更重要的是要让学生收获其数学思想,用知识里蕴含的“魂”去塑造学生的灵魂。这是让学生受益终生的。
总之,转化的思想应用于数学学习的各个领域,但不管在哪方面,它都是以已知的、简单的、具体的、基本的知识为基础,将未知的化为已知的,复杂的化为简单的,抽象的化为具体的,一般的化为特殊的,非基本的化为基本的,从而得出正确的解答。其实,转化本是化归数学思想方法的一种体现(把所要解决的问题,经过某种变化,使之归结为另一个问题,再通过另一个问题的求解,把解得结果作用于原有问题,从而使原有问题得解)。因此在转化的过程中,教师自身应该有一个宽阔的转化意识,夯实转化过程中的每一个细节,在单元结束后的“整理与练习”中,再次提升转化思想,并在后续的学习中有意识地关注转化思想,进行必要的沟通与整合。
❺ 小学数学教学中的转化思想是指什么
小学数学教学中的转化思想是指把生疏问题转化为熟悉问题,把抽象问题转化为具体问题,把复杂问题转化为简单问题,把一般问题转化为特殊问题,把高次问题转化为低次问题,把未知条件转化为已知条件,把一个综合问题转化为几个基本问题,把顺向思维转化为逆向思维。在小学数学教学中,应当结合具体的教学内容,渗透数学转化思想,有意识地培养学生学会用“转化”思想解决问题,从而提高数学能力。
❻ 转化在小学数学中的应用
转化是一种常用数学思想方法,利用这种方法,可以把新知识转化成旧知识,从而使新问题得到解决。“转化思想”是数学思想方法中最基本、也是最重要的一种方法,理解并掌握了这种方法,许许多多的数学问题都能迎刃而解,同时还能够培养学生迁移类推的能力和解决问题的能力。
一、转化在小学数学计算中的应用
1、小数乘法转化成整数乘法。
2、除数是小数的除法转化为除数是整数的除法。
3、分数除法转化为分数乘法。
4、异分母分数加减法转化为同分母分数加减法。
5、在四则运算中小数、分数、百分数的互化。
二、转化在平面图形面积计算中应用
1、 将平行四边形通过煎一剪,移一移,拼一拼,转化成长方形,进而推导出其面积计算公式。
2、一般将三角形、梯形通过拼凑法转化成平行四边形,并推导出它们的面积计算公式。(当然也可以通过剪拼法将三角形转化成长方形、将梯形转化成平行四边形、长方形或三角形,推导出它们的面积计算公式,这是对课本教学内容的拓展,难度相对高一些。)
3、将圆通过剪拼法转化成近似的长方形或平行四边形,推导出其面积计算公式。(也可以通过一定的方法,把圆转化成三角形等推导面积计算公式,这对学生来说是一个挑战)
4、 把圆环剪拼成近似的梯形,推倒出面积计算方法。(对学生来说,难度很高,也不容易理解,适合于在数学活动课中进行。)
三、转化在立体图形体积计算中的应用
1、把圆柱体通过剪拼的方法转化成近似的长方体,推导出体积计算公式。
2、将圆锥体转化成等底等高的圆柱体推导出体积计算公式。
3、将不规则形体转化成规则形体计算出体积。
四、转化解决实际问题中的运用
如四(2)班一共有45名同学,其中男生人数是女生的4/5。男生有多少名?把女生人数平均分成5份,男生人数有这样的4份,全班人数一共有9份。这样就转化为男生人数占全班人数的4/9,进而就能算出男生人数。
转化是一种解决问题的策略,它实质上是以“退“为”进“,”退“是手段,“进”是目的。转化思想不但在小学数学中用到,在中学数学中,也经常用到。因此,我们应该充分重视转化在教材中的作用,使学生初步学会这一数学思想方法,不断培养学生的思维能力,提高学生的数学素养。
❼ 怎样培养学生运用转化策略解决数学问题
“转化”是研究和解决数学问题的一种有效的思考方法,根据学生已有的生活经验和知识,运用事物和事物之间互相联系,把未知变为已知,把复杂变为简单的思维方法。《新数学课程标准》中指出:数学学习应当使学生“形成解决问题的一些策略,体验解决问题策略的多样性,发展实践能力与创新精神”。就解题的本质而言,解题既意味着“转化”,因此学生学会数学“转化”策略,有利于实现学习迁移,特别是原理和态度的迁移。因此,我们在小学数学教学中,应当结合具体的教学内容,渗透数学“转化”思想,有意识地培养学生学会用“转化”思想解决问题,从而提高数学能力。
“转化”是解决问题时经常采用的方法,“转化”的手段和方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握“转化”策略不仅有利于问题的解决,更有益于思维的发展。教学中不应只以学生能够解决教材里的各个问题为目的,而在于学生对“转化”策略的体验与主动应用。具有初步的“转化”意识和能力,对以后的学习与解决问题将会产生十分积极的作用。
二、转化的学习基础
(一)知识基础--策略学习的基石
万丈高楼平地起,转化策略的运用同样如此。“转化”就是把新问题变成旧问题,把复杂的问题变成简单的问题,从而使原问题得以解决的一种策略。其实,运用什么方法转化,转化后的问题又怎么解决,这都需要一定的知识基础,否则问题也不能得到解决。可见,一定的知识基础是“转化”策略学习的基石。
(二)能力基础--策略学习的有力杠杆
策略的学习不仅需要一定的知识基础,也需要一定的能力基础。心理学研究表明:能力是人们获取知识、掌握技能的基本条件,完成任何一种活动都需要多种能力的结合。因此,学生已具备的能力基础可以说是策略学习的有力杠杆。
1.观察、想象、操作能力:
学习几何形体离不开敏锐的观察力和空间想象力,以及在此基础上进行动手操作的能力。
2.迁移、推理能力:由于“转化”是把一类问题转化成另一类问题,因此无论从转化的视角,还是从推广应用的视角,学生都应具有迁移、推理的能力。所以,教学“转化”策略时,要引导学生正确推理,实现转化,切实解决问题。当然更应由例题的学习,进而能解决类似的更多实际问题。
3.求异、创新能力:人人具有求异的思想,人人具有创新的冲动。事实上,转化也是一种重要的策略,但在真正解决问题时,还需要确定具体的转化目标和方法。
4.收集、处理信息的能力:现代社会是信息社会,收集、处理信息的能力是一个人必备的学习能力,也是衡量一个人能力高低的重要标准。因而,它也是学生学习转化策略的重要能力基础。
三、转化策略
1、运用类比联想,实现转化
类比方法是通过对两个研究对象的比较,根据它们某些方面的相同或类似之处,推出它们在其他方面也可能相同或类似的一种推理方法。因此,在学习新知识时,适时运用类比方法进行转化,可使生疏的问题转化为熟悉的问题,有利于学生更好地接受新知识,巩固旧知识。
2、运用数形结合思想,实现转化
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过做一些线段图、 数形图 、长方形面积图 、集合体等来帮助学生正确理解数量关系,使问题内容具体化、形象化,从而把复杂问题转化为简单问题的一种数学思想方法。
3、运用替换思想,实现转化
替换思想是数学教学的重要思维方法,替换的实质是改变题目的形式,但却不改变题目的本质。当我们遇到题意比较难懂的习题时,可以把题中的某些条件或问题替换成与其内容等价的另一种形式,从而实现解题思路的顺利转化,以达到解题的目的。
4、运用假设法,实现转化
在小学数学中,学生对思考性较强的问题常常感到难以解决。因此,教师在教学过程中要注意教给学生解决问题的方法,以提高他们的思维能力。而假设方法往往在解决问题的过程中起关键性的作用。假设法就是把抽象性的问题转化为比较具体的问题,使其中的数量关系更加明确,更易于把握解题的路径。
5、运用已有知识,实现转化
生疏问题向熟悉问题转化是解题中常用的思考方法。解题能力实际上是一种创造性的思维能力,而这种能力的关键是能否细心观察,运用过去所学的知识,将生疏问题转化为熟悉问题。因此作为教师,应深刻挖掘量变因素,将教材抽象程度利用学过知识,加工到使学生通过努力能够接受的水平上来,缩小接触新内容时的陌生度,避免因研究对象的变化而产生的心理障碍,这样做常可得到事半功倍的效果。
6、运用合理设置问题,实现转化
教师通过合理设置问题,将一个复杂的问题分成几个难度与学生的思维水平同步的小问题,再分析说明这几个小问题之间的相互联系,以局部知识的掌握为整体服务。例如,针对某一概念,可围绕下面几个角度设置问题:概念的构成;概念所涉及的子概念;概念的外延;概念的内涵;概念的确定与否定;概念之间的关系;概念的应用以及由概念而设计的一些构造性问题等等。问题与问题之间要有一定的梯度,以利于教学时启发学生思维。
复杂问题简化是数学解题中运用最普通的思考方法。一个难以直接解决的问题,通过深入观察和研究,转化为简单问题迅速求解。