A. 数学上的圆周率是多少
圆周率小学一般是3.14,初中以后如果没有规定精确到几位小数的话用π表示
B. 圆周率是多少
圆周率用字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
圆周率(Pai)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10(约为3.14)。
C. 数学圆周率的计算
圆周率
是指平面上圆的周长与直径之比
(ratio
of
the
circumference
of
a
circle
to
the
diameter)
。用符号π(读音:pài)表示。中国古代有圆率、周率、周等名称。(在一般计算时π=3.14)
古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。
十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。
进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于
超级计算机
,人们已经得到了圆周率的2061亿位精度。
历史上最马拉松式的计算,其一是德国的Ludolph
Van
Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William
Shanks,他耗费了15年的光阴,在1874年算出了圆周率的
小数点
后707位。可惜,后人发现,他从第528位开始就算错了。
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用Ludolph
Van
Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否
循环小数
。自从1761年Lambert证明了圆周率是
无理数
,1882年Lindemann证明了圆周率是
超越数
后,圆周率的神秘面纱就被揭开了。
现在的人计算圆周率,
多数是为了验证计算机的计算能力,还有,就是为了兴趣
D. 数学圆周率等于多少
3.141 5926 5358 9793 2384 6264 3383 2795 0238 4197 1693 9937 5105 8209 7494 4592 3078 1640 6286 2089 9862 8034 8753 4211 7067 9321 4808 6513 2823 0664 7093 8446 0955 0582 2317 2535 9408 1284 8113 7450 2841 0270 1938 5211 0595 9644 6229 4895 4930 3819 6442 8810 9756 6503 3446 1284 7564 8233 7867 8316 5271 2019 0914 5648 5669 2346 0348 6104 5432 6618 2133 9360 7260 2491 4127 3724 5870 0660 6315 5881 7488 1520 9209 6282 9754 0917 1536 4367 8925 9036 0011 3305 3054 8820 4665 2138 4145 9519 4151 1509 4330 5727 0365 7595 9195 3092 1861 1738 1932 6117 9310 5118 5480 7445 2379 9627 4956 7351 8857 5272 4891 2279 3818 3011 9491 2983 3671 3624 4055 6643 0860 2139 4946 3952 2473 7190 7021 7986 0943 7027 7055 9217 1762 9317 6752 3846 7481 8467 6691 0513 3000 5681 2714 5263 5808 2778 5771 3427 5278 9609 1736 3717 8721 4684 4090 1224 5534 3014 6549 5853 3105 0792 2796 8925 8723 5420 1994 6112 1290 2196 0864 0344 1815 9813 6297 3477 1309 9605 1870 7211 3499 9999 8372 9280 4995 1059 7117 3281 6096 3185 9502 4159 4553 4690 8302 6425 2230 8253 3846 8503 9311 8817 1010 0031 3783 8865 8753 3208 3814 2061 2177 6691 4730 3598 2534 9018 8755 4687 3115 9562 8538 8239 3783 5937 5195 7781 8577 8053 2171 2268 0661 3001 9278 7661 1195 9092 1642 9198 9180 9525 7301 0654 8586 3278 3615 3381 8279 6823 0301 9520 3530 1852 0649 9577 3622 9724 1189 7217 7528 3479 1315 1557 1557 4857 2424 5415 0695 9506 2953 5116 8612 2785 5889 0750 9818 1754 6374 6493 9339 2550 6040 0927 7016 7113 9009 8488 2401 2889……
圆周率是个无限小数,有的题目会要求用3来计算,一般都是用3.14来算,主要还是看题目要求。
E. 圆周率具体是多少
圆周率具体是3.141592654。
圆周率是圆周长与直径的比值,也是圆形面积与半径平方的比,用一个希腊字母π来表示,是一个在数学及物理学中普遍存在的数学常数。
π是精确计算圆周长、圆面积、球体积等几何形状的关键值,是一个无理数。在日常生活中,通常使用3.14代表圆周率去进行近似计算,而3.1415926536已经足以满足一般计算。
特性
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。
π在许多数学领域都有非常重要的作用。
F. 数学中圆周率是多少
数学中圆周率是3.14,3.14也是π
G. 圆周率(完整是多少)
3.33446128475......
是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
圆周率(Pai)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率的由来:
一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605。
埃及人似乎在更早的时候就知道圆周率了。 英国作家 John Taylor (1781–1864) 在其名着《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。
例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。公元前800至600年成文的古印度宗教巨着《百道梵书》(Satapatha Brahmana)显示了圆周率等于分数339/108,约等于3.139。
以上内容参考网络-圆周率
H. 圆周率=多少
3.1415926 与3.1415927之间,这是我国古代杰出数学家祖冲之的测量数据。