Ⅰ 日常生活中的数学问题有哪些
一、早在封建社会的中国历法把一昼夜分成一百刻再分十二时,每时八刻三十三秒三十三微三十三纤,永无尽数。而西方国家则把九十六刻分成十二时则无余数,方便计算。
二、旧中国的瓦房,房顶从正中央向房子前后两侧向下倾斜切都是呈现三角形状,三角形具有稳定性被运用在房屋的建设中;现在各种道路建筑桥梁等的建设更是离不开数学。
三、市内里的红绿灯,每隔多久红灯亮一次?一辆车在这段路上行驶时速多少,撞上红灯亮的次数才是最少?最节省时间?一层楼有多高?10米是多长?比你高的人是谁?比你矮的人是谁?和你差不多的是谁? 古今中外出现的很多关于数学与生活的故事,数学涉及的领域实在是太广了。
四、在经济学的应用:银行利率、股票的上涨与下跌、衣服打折等等。
银行存款分:整存整取、零存整取、定期存款、活期、国债这些存款形式各种各样,利率也有大有小,平时我们是这样计算利率的:本金×利率×时间=所得利息,然后还要从利息里扣除20%来上税(除国债外)之后剩下的80%的利息就是你自己应得的利息了。
五、工程师使用比例尺,为了让人们更好的了解这件东西;商农使用的四则计算,是为了更简单、准确的计算出该商品价值;制作各类统计表,是为了更好的统计资料,使人一看一目了然;使用百分数,是为了更好的计算出商品打折后的价钱及折扣率;
计算容积或体积而使用去尾法,是为了确保无误的让物品存放而不溢出;同一类单位换算,是为了方便我们的计算;使用代数代表运算定律和计算公式,是为了更方便地为研究和解决问题。
(1)在生活中用数学解决问题有哪些扩展阅读:
数学源自数千年前人们的生产实践,自古以来就与人类的日常生活密不可分。着名的阿基米德发现的浮力原理,也是从生活中发现的。
传说希伦王召见阿基米德,让他鉴定纯金王冠是否掺假。他冥思苦想多日,在跨进澡盆洗澡时,从看见水面上升得到启示,作出了关于浮体问题的重大发现,并通过王冠排出的水量解决了国王的疑问。
在着名的《论浮体》一书中,他按照各种固体的形状和比重的变化来确定其浮于水中的位置,并且详细阐述和总结了后来闻名于世的阿基米德原理:放在液体中的物体受到向上的浮力,其大小等于物体所排开的液体重量。从此使人们对物体的沉浮有了科学的认识。
Ⅱ 数学在生活中的应用有哪些
数学在生活中的应用有工资的计算、数学加减乘除的计算、面积的计算、家庭生活成本计算、程序的计算。
一、工资的计算
计算机相关工作者,数学是工作中必不可少的,C语言写程序,就需要运用排序算法,如快速排序,插入排序,堆排序,归并排序,基数排序,希尔排序,桶排序,锦标赛排序等等,如果掌握《数据结构》的相关知识,就会变得非常容易。
Ⅲ 数学在实际生活中的应用有哪些
数学在生活中的应用包括但不限于:
1、骑自行车的时候用脚蹬一圈脚踏板自行车行走的米数。我们可以去测量车轮的半径,再用圆的周长公式求出来。
2、面积的计算。自家的住房面积,公园的占地面积,操场的活动面积等等。
3、工资的计算。财务收入与支出,日常的消费管理等等。
4、数学加减乘除的计算。如商品的买卖,日期的计算,时间的计算。
5、家庭生活成本计算,学习了数学以后就会在生活中不由自主的使用。经常被使用的是统筹方法,如煮饭过程中的一系列事物先后安排,都是有数学科学上的学问的。
数学的相关名言:
万物皆数。——毕达哥拉斯
几何无王者之道。——欧几里德
数学是上帝用来书写宇宙的文字。——伽利略
Ⅳ 我要5个生活中用数学解决的例子
数学在生活中的运用有很多。
1、老家种菜地,需要用铁丝围一个长方形,要多长的铁丝?
这个用的数学实例:长方形周长=(长+宽)x2
量出菜地的长和宽,用数学公式求出周长,就是需要铁丝的长度。
2、家里面装修,需要准备多少块地板砖?
用到的数学实例:家中的地面面积以及一块地板砖的面积
算出家中的实际用地面积,然后算出地板砖的面积,用家中地面面积除以一块地板砖的面积就是需要购买的地板砖的块数。
5、上学放学路线问题。
用到的数学原型:两点之间,线段最短的问题。虽然很简单,但也是最常见的数学问题。
Ⅳ 数学在生活中的应用有哪些
1、工作生活中数学的应用:汽车、电子、房地产、移动通信、 IT 产业、教育等。
2、日常生活中数学的应用:购物、估算、计算时间、确定位置和买卖股票等。
3、各个学科上数学的应用:语文、物理、化学、音乐、美术、舞蹈等。
Ⅵ 数学在现实生活中的有什么应用
如下:
第一,骑自行车的时候你有想过用脚蹬一圈脚踏板自行车行走了多少米吗?我们可以去测量车轮的半径,再用圆的周长公式求出来。
或者是用一条绳子铺在地上测量,或者你还有其他的办法。然后你看到旁边的同学骑自行车比你骑得快,你有想过你是怎么判断谁快谁慢吗?相同的速度比较路程?还是相同的路程比较速度?当然都可以。
第二,由于数学在构成方面具有的本源性质,导致世界上大部分学科的发展与进步都离不开数学,这一点在同样需要严谨思维的建筑学领域更是显得尤为突出。建筑学追求的是人与自然的和谐统一,生于自然也回报与自然,达到建筑物与周围环境的和谐共存。
传统建筑学是最早应用数学理论的,而其中最为经典的就是“黄金分割”。例如古希腊的巴特农神庙,其高和宽的比保持在0.618,后世的建筑师发现按照这样的比例来设计建筑物,建筑物也会更加的美观漂亮。
对于现代的建筑领域来说,应用数学是完美的设定工具,可以在最大程度避免人们产生不必要的误差。古今中外的建筑师将建筑学知识与自身的数学思维相结合,这样我们才得以在今天看到各种宏伟的建筑。
第三,今天上学的这段路程,你知道到底是在哪一段花的时间最多吗?画个平面直角坐标系,横坐标为时间,纵坐标为离家的路程,就能一目了然。
第四,迟到的时候需要在执勤人员那里登记,要求写下年级班级姓名。这样学校就会知道这个星期哪个班的迟到人数最多,哪个班迟到人数最少。也是简单的统计学问题。
Ⅶ 6个用数学知识解决实际问题的例子
例1、
红花衬衫厂要制做一批衬衫,原计划每天生产400件,60天完成。实际每天生产的件数是原计划每天生产件数的1.5倍。完成这批衬衫的制做任务,实际用了多少天?
分析与解
要求完成这批衬衫的制做任务,实际用了多少天,必须知道这批衬衫的总数和实际每天生产的件数。已知原计划每天生产400件,60天完成,就可以求出这批衬衫的总数量;又知道实际每天生产的件数是原计划生产件数的1.5倍,就可以求出实际每天生产的件数。
完成这批衬衫的制做任务,实际用的天数是:
40060(4001.5)
=24000600
=40(天)
也可以这样想:要生产的衬衫的总数量是一定的,所以,完成这批衬衫制做任务所需要的天数与每天生产衬衫的件数成反比例关系。由此可得,实际完成这批衬衫制做任务的天数的1.5倍,正好是60天,于是得出制做这批衬衫实际需要的天数是:
601.5=40(天)
答:完成这批衬衫制做任务,实际用了40天。
例2、
东风机器厂原计划每天生产240个零件,18天完成。实际比原计划提前3天完成,实际每天比原计划每天多生产多少个零件?
分析与解
要求实际每天比原计划每天多生产多少个零件,得先求出实际每天生产多少个零件,再减去计划每天生产的零件数:
24018(18-3)-240
=432015-240
=288-240
=48(个)
也可以这样想:实际与计划所完成的零件总数是相同的。根据反比例意义可知,每天生产零件的个数与完成生产这批零件所用的天数成反比例关系。由此可知,原计划完成任务的天数与实际完成任务的天数比18∶(18-3)即
6∶5,就是实际每天生产零件的个数与原计划每天生产零件个数的比。当然,实际每天生产零件的个数是原计划每天生产零件的个数的6/5。于是求出实际每天比原计划每天多生产零件的个数是:
=48(个)
还可以这样想:生产零件的总数是
24018=4320(个);把这个数分解质因数,然后再把分解的质因数适当地分组,分别表示出原计划每天生产的个数与完成天数的乘积和实际每天生产的个数与实际完成天数的乘积。
4320=25×33×5
=(24×35)(232)……原计划每天生产的个数与完成
天数的乘积
=(25×32)×(35)……实际每天生产的个数与完成天数的
乘积
进而求出实际每天比原计划每天多生产的个数是:
25×32-24×35
=288-240
=48(个)
答:实际每天比原计划每天多生产48个。
还有好多,自己去看