导航:首页 > 数字科学 > 分数学解方程怎么做

分数学解方程怎么做

发布时间:2022-12-21 10:21:17

1. 数学解方程有什么方法

数学解方程的方法:

1、去分母,这是解一元一次方程的首要步骤,有分母的一元一次方程首先要去分母,当然如果方程中没有分母,省去此步骤。

2、去括号,去除分母之后,就该完成括号的去除了,如果有分母,先去分母再去除括号,没有括号的话可以省去此步骤。

3、移项,每个一元一次方程都会有的一步,就是把同类项的数据移动到同一边,把未知数移动到等号的左边。

4、直接根据四则运算中已知数与得数之间的关系,求未知数的值。

5、把含有未知数x的项看成是一个数,逐步求出未知数的值。

6、通过计算,先把原方程化简,再逐步求出方程的解。

2. 分数方程怎么解 步骤是什么

分数方程是数学名词。首先大家知道方程的意思是含有未知数的等式,也明白什么是分数,所以分数方程也比较好理解,就是方程的一种形式或者说一个类别。

分数方程解题步骤

方法一

①看——看等号两边是否可以直接计算;

②变——如果两边不可以直接计算,就运用和差积商的公式对方程进行变形;

③通——对可以相加减的项进行通分;

④除——两边同时除以一个不为零的数;

注意:⑴都含有未知数的项才能相加减,或者都不含有未知数的项才能相加减;

⑵除以一个数等于乘以这个数的倒数;

方法二

1、去括号(没有括号时,先算乘、除,再算加、减)。

2、去分母。

3、移项。

4、合并同类项。

5、系数化为1。

分数的解方程怎么做

1、先把分数方程化成整数方程(方程两边同时乘以所有分母的最小公倍数)

2、把未知数移动到方程一边,把其他的移动到另一边

3、合并同类项

4、解出结果。

3. 分数的解方程怎么做

1、去括号(先去小括号,再去大括号)注意乘法分配律的应用

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c);

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c);

乘法分配律:(a+b)×c=a×c+b×c;

减法的性质:a-b-c=a-(b+c);

除法的性质:a÷b÷c=a÷(b×c);

(注意:去括号时,括号前面是减号的,去掉括号,括号里的每一项要变号,也就是括号里的加号要变减号,减号要变成加号。这是运用了减法的性质)

例如:30x-10(10-x)=100。

解:30x-(10×10-10×x)=100——(乘法分配律)

30x-(100-10x)=100

30x-100+10x=100——(去括号,括号前是减号,去掉括号,括号里的每一项要变号,加号变减号,减号变加号)

40x-100=100——(合并同类项)

40x=100+100——(移项,变号)

40x=200——(合并同类项)

X=5——(系数化为1)

2、去分母:找分母的最小公倍数,等式两边各项都要乘以分母最小公倍数(去分母的目的是,把分数方程化成整数方程)

3、移项:“带着符号搬家”从等式左边移到等式的右边,加号变减号,减号变加号。(移项的目的是,把未知项移到和自然数分别放在等式的两边)

(加号一边省略不写例:2X-3=11 其中2X前面的加号就省略了,3前面是减号,移到等式右边要变成加号)

例如:4x-10=10。

解:4x=10+10——(-10从等式左边移到等式右边变成+10)

4x=20

X=20÷4

X=5

4、合并同类项:含有未知数的各个项相加减,自然数相加减

(也可以先把等式两边能够计算的先算出来,再移项)

例如:6X + 7 + 5X = 18。

解:11X + 7 = 18 ——(先把含有未知数的量相加减)

11X = 18- 7 ——(把+7移到等式右边变成 -7)

11 X = 11

X = 1 ——(系数化为1)

5、系数化为1:(也就是解出未知数的值)

(3)分数学解方程怎么做扩展阅读:

一元三次方程:

就是关于立方的方程

一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d=0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。

一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。

归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:

⑴将x=A^(1/3)+B^(1/3)两边同时立方可以得到

⑵x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))

⑶由于x=A^(1/3)+B^(1/3),所以⑵可化为

x^3=(A+B)+3(AB)^(1/3)x,移项可得

⑷x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知

⑸-3(AB)^(1/3)=p,-(A+B)=q,化简得

⑹A+B=-q,AB=-(p/3)^3

⑺这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而⑹则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即

⑻y1+y2=-(b/a),y1*y2=c/a

⑼对比⑹和⑻,可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a

⑽由于型为ay^2+by+c=0的一元二次方程求根公式为

y1=-(b+(b^2-4ac)^(1/2))/(2a)

y2=-(b-(b^2-4ac)^(1/2))/(2a)

可化为

⑾y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)

y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)

将⑼中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入⑾可得

⑿A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)

B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)

⒀将A,B代入x=A^(1/3)+B^(1/3)得

⒁x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)

式 ⒁只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。

x^y就是x的y次方好复杂的说塔塔利亚发现的一元三次方程的解法一元三次方程的一般形式是

x3+sx2+tx+u=0

如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消去。所以我们只要考虑形如 x3=px+q 的三次方程。

假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。

代入方程,我们就有

a3-3a2b+3ab2-b3=p(a-b)+q

整理得到

a3-b3 =(a-b)(p+3ab)+q

由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时,

3ab+p=0。这样上式就成为

a3-b3=q

两边各乘以27a3,就得到

27a6-27a3b3=27qa3

由p=-3ab可知

27a6 + p3 = 27qa3

这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x。

4. 分数的解方程怎么做

1、先把分数方程化成整数方程(方程两边同时乘以所有分母的最小公倍数)
2、把未知数移动到方程一边,把其他的移动到另一边
3、合并同类项
4、解出结果。

5. 解方程怎么做

解方程的方法包括四种,分别是一元一次方程的解法、二元一次方程组的解法、一元二次方程的解法、分式方程的解法。

一元一次方程的解法

所谓一元一次方程,就是含有一个未知数,且未知数的最高次数为1的整式方程。
求解一元一次方程的步骤包括:去分母、去括号、移项、合并同类项,直至把一元一次方程化简为ax=b(a≠0)的形式,再两边同除以系数a,就可以求得一元一次方程的解。

二元一次方程组的解法

所谓二元一次方程组,就是含有两个未知数,且未知数的最高次数为1的整式方程组。求解二元一次方程组的关键步骤是消元,把二元一次方程组转化为一元一次方程,再按照一元一次方程的解题步骤,就可以求得方程组的解。我们常用的消元方法两种,分别是代入消元法和加减消元法。

一元二次方程的解法

所谓一元二次方程组,就是含有一个未知数,且未知数的最高次数为2的整式方程。求解一元二次方程的方法有直接开平方法、配方法、因式分解法和公式法。当然,在求解一元二次方程之前,我们可以先把这个方程整理成一般形式ax²+bx+c=0(a≠0),用根的判别式来判断一下方程根的情况,根的判别式=b²-4ac。如果根的判别式是正数,则一元二次方程有两个不同的根;如果根的判别式=0,则一元二次方程有两个相同的根;如果根的判别式是负数,则一元二次方程没有实数根。

分式方程的解法

所谓分式方程组,就是分母含有未知数的方程。求解分式方程的关键步骤是去分母,把分式方程转化为整式方程,再按照整式方程的求解方法求得方程的解。但是,在去分母的过程中可能会导致增根的出现,也就是说,求得的整式方程的解却不是原分式方程的解。所以,求解分式方程的最关键步骤是验根,也就是说,要把求解整式方程得到的每个解代入原分式方程进行检验,如果分式方程的分母为零,则此解就是增根,应该舍去。

【结语】
解方程是初中数学的重要知识点,对于不同种类的方程,我们要采取不同的求解方法,只有这样才能既快又好地求得方程的解。

6. 数学中分数解方程怎么做

我为大家整理了分数解方程的 相关知识,大家跟随我一起来看一下吧。

分数解方程

1.去分母:方程两边同乘以各分母的最简公分母,将分式方程化为整式方程。

2.移项:将含有未知数的项移到等号的一边(一般为左边),将常数项移到等号的另一边(一般为右边)

3.合并同类项:化为ax=b(≠0)的形式

4.系数化为1,求得未知数的值

5.检验,舍去增根。

分数方程例题

电子管厂两个车间共生产电子管2170,其中甲车间生产数量的2/5比乙车间的1/5还多616个,这个月甲车间生产电子管多少个?

答:我们考虑甲车间的2/5与乙车间的2/5的和是2170*2/5=868。这样用乙车间的1/5还多616,替代甲车间的2/5就是乙车间的3/5再多616是868,所以乙车间是(868-616)/(1/5+2/5)=420,那么甲车间就是2170-420=1750。

方程定义

方程是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,是含有未知数的等式,通常在两者之间有一等号“=”。方程不用按逆向思维思考,可直接列出等式并含有未知数。它具有多种形式,如一元一次方程、二元一次方程等。广泛应用于数学、物理等理科应用题计算。

以上是我整理的解分数方程的知识,希望对大家有所帮助。

阅读全文

与分数学解方程怎么做相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:739
乙酸乙酯化学式怎么算 浏览:1404
沈阳初中的数学是什么版本的 浏览:1350
华为手机家人共享如何查看地理位置 浏览:1042
一氧化碳还原氧化铝化学方程式怎么配平 浏览:884
数学c什么意思是什么意思是什么 浏览:1408
中考初中地理如何补 浏览:1299
360浏览器历史在哪里下载迅雷下载 浏览:701
数学奥数卡怎么办 浏览:1387
如何回答地理是什么 浏览:1023
win7如何删除电脑文件浏览历史 浏览:1055
大学物理实验干什么用的到 浏览:1484
二年级上册数学框框怎么填 浏览:1699
西安瑞禧生物科技有限公司怎么样 浏览:971
武大的分析化学怎么样 浏览:1247
ige电化学发光偏高怎么办 浏览:1337
学而思初中英语和语文怎么样 浏览:1650
下列哪个水飞蓟素化学结构 浏览:1423
化学理学哪些专业好 浏览:1486
数学中的棱的意思是什么 浏览:1057