① 小学数学教学如何找准重难点
所谓教学重点,就是学生必须掌握的基本技能.如:意义、性质、法则、计算等等.如何在数学教学中突破重点和难点呢?这就需要我们每一位数学教师在教学实践中不断地学习、总结、摸索.通过自己十多年来的数学教学实践,对此问题有如下点滴体会和做法.
一、认真备课,吃透教材,抓住教材的重难点是突破重难点的前提
小学数学大纲指出:小学数学教学,要使学生不仅长知识,还要长智慧……,培养学生肯于思考问题,善于思考问题.做为一个数学教师,要明确这一目的,把我们的主要精力,放在发展学生智力上,着眼于培养和调动学生的积极性和主动性,引导学生学会自己走路,首先自己要识途.我感到,要把数学之路探清认明,唯一的办法就是深钻教材,抓住各章节的重点和难点,备课时既能根据知识的特点,又能根据学生认识事物的规律,精心设计,精心安排,取得事半功倍的效果.因此,有课前的充实准备,就为教学时突破重点和难点提供了有利条件.
二、以旧知识为生长点,突破重点和难点
小学数学是系统性很强的学科,每项新知识往往是旧知识的延伸和发展,又是后续知识的基础.知识的链条节节相连、环环相扣、旧里蕴新,又不断化新为旧,不仅纵的有这样的联系,还有横的联系,纵横交错,形成知识网络,学生能认识知识之间的联系,才能深刻理解,融汇贯通.数学教学就是要借助于数学知识的逻辑结构,引导学生由旧入新,组织积极的迁移,促成由已知到未知的推理,认识简单与复杂问题的连结,用数学学科本身的逻辑关系,训练学生的思维.数学教学并没有固定模式,实际教学中还要考虑到教学内容的一些特点,当新旧知识之间有紧密的逻辑关系或所学知识与旧知识之间没有实质性的变化,只是认知结构中原有知识的特例时,教学时就以原有知识为生长点,直接由旧到新,即从学生已有的知识和经验出发.因为学生获取知识,总是在已有的知识经验的参与下进行的,脱离了已有的知识经验基础进行教学,其原有的知识经验就无法参与,而新旧知识连结纽带的断裂,必然会给学生带来理解上的困难,使其难以掌握所学的知识.正因如此,自己在教学中运用了迁移规律,来实现重、难点的突破.
1.若一个新知识可以看作是由某一个旧知识发展而来的,教学中则要突出“演变点”,达到突破重点难点的目的:
如“有余数除法的验算”这部分知识,要以前面能整除的除法验算为基础.两类验算都要用“商和除数相乘”,后者演变的是“还要加上余数”.教学时,不但复习能整除的验算方法,还以127÷6为例要复习有余数的除法,其中重点追问:“这道题中127÷6,商21是平均分的127吗?那么平均分了多少?验算时只用商和除数相乘行吗?应怎么办?这一系列问题,大家讨论”.这样就能顺利地掌握新规律和验算方法.
2.若一个新知识可以看作是由两个或两个以上旧知识组合而成的,教学中则通过突出“连接点”这一途径,从而突破重点难点:
如“异分母分数加减法”是由同分母加减法的计算方法和通分两个旧知识组成的,它的关键问题是因为分数单位不同不能直接相加减,教学新知识前复习同分母分数加减法:
这是旧知识,并提问:同分母分数加减法的法则是什么?为什么它们能 为什么?这时又可用旧知识——通分来代替,则成为两个旧知识的连接点,这就是今天要学习的新内容异分母分数加减法.并请同学们在此基础上讨论此题的计算步骤,抓住规律“化异为同”,沟通新旧知识,从而突破难点.
3.若一个新知识可以看作与某一些旧知识属同类或相似,教学时则要突出“共同点”,进而突破重点难点:
如除数是两、三位数的除法是多位数除法的重点和难点,在这部分知识教学中,教师的主要任务是以学生为主体,引导学生运用迁移规律,分层次逐步推进,突破各个难点,学好试商的方法.除数是两、三位数的除法,是以除数是一位数的除法为基础的,后者是除数由一位变为两位、三位,出现了从被除数的哪一位除起,先看被除数的前几位的问题.但无论除数是几位数,试商方法都是一致的,即有共同点,就是教学中应抓住的,教学时,先以除数是一位数的除法为例,复习一位数除法的计算法则及试商方法,从而启发学生明白除数是两位数的除法的计算法则及试商方法同一位数除法相同,进而再研究除数是三位数的除法,通过三个层次的教学,总结归纳出除数是一、二、三位数的除法都是从最高位除起,除数是几位数,就看被除数的前几位,除到哪一位够除,就把商写在哪一位的上面,每次除得的余数必须比除数小.这就抓住了一类知识的共同点,仿旧知识学习新知识,再把新知归为旧知识.学生容易理解记忆,为学好多位数的试商,达到正确地迅速地求出商,提高计算能力奠定了基础.因此,在数学教学过程中,要重视揭示和建立新旧知识的内在联系,从已有的知识和经验出发,找准知识的生长点,帮助学生建立新旧知识的联系,是教学中突破重点难点的又一途径.
三、依据教材内容的重点和难点选择板书内容,并以板书设计为突破口
板书是课堂教学的缩影,是揭示教学重点难点的示意图,也是把握重点、难点的辐射源,板书起着提纲挈领的作用,它是在吃透教学大纲的基础上,根据教学的要求、特点和学生的实际情况设计出来的,把提纲性、艺术性、直观性融为一体,既起到纲举目张的作用,又收到激发兴趣、启迪思维的效果.自己通过多年来的实践能够根据教学内容的特点,认真选择突出重点的板书内容,精心设计板书,并力求做到板书的形式新颖、布局合理、有层次、别具一格,突出重点.例如:在备“正反比例应用题对比练习课”时,为了突破本节课的重点难点,我把突破口放在板书设计上:如下:
正反比例应用题对比练习课
不同点:
2.等式:商=商 积=积
相同点:
1.意义:x变、y随x变
2.步骤:相同
从板书的内容上看体现了这节课的重点和难点,从板书的形式上看,比较直观,对比性强,学生便于比较,对学生能够起到引导的作用,于是老师提出问题:通过这节课的学习,谁能总结归纳正反比例应用题的异同点是什么?通过学生的思考与板书内容的沟通,学生便从正反比例的意义上、解题思路上、条件方法上总结出正反比例应用题的异同点.因此教师如何根据教材特点,选择板书内容,合理设计板书格局是突破重点难点的途径之一.
四、强化感知,突破重点、难点
几何部分中的概念及有关知识抽象,学生难以理解、难以接受,要突破这些难点,教学中必须遵循儿童的认知规律,用形象、鲜明的直观教学手段,强化感知,突破难点.
如圆柱与圆锥底面积、高、体积之间,在一定条件下的内在联系是六年级学生学习中的一个难点.因此教学时自己采用直观教学与代入求值相结合的方法进行教学,指导学生动手操作,反复观察分析,做法分为如下三步:
1.将橡皮泥捏成一个底面半径为2厘米(即底面积12.56平方厘米),高为5厘米的圆柱体.
板书:已知:r=2 h=5 求S=?(12.56) V=?(62.8)
2.再将这个圆柱体捏成一个以12.56平方厘米为底的圆锥体(学生先想象这个圆锥体的形象,再按要求做)
想算结合:什么没变?什么变了?与原来圆柱体有什么关系?
(V不变、S不变、形变、H变)
板书:已知: V=62.8 S=12.56 求h锥=?(15)
15÷5=3
3.把圆锥体捏回圆柱体,再捏成以圆柱高5厘米为锥高的圆锥体;
想算结合:什么没变?什么变了?(V没变、H没变、S变)与原来圆柱体又有什么关系?
板书:已知:h=5 V=62.8 求S锥=?(37.68)
37.68÷12.56=3
通过直观教学和计算相结合,学生发现圆柱体和圆锥体之间的内在联系:
由于学生自己动手,直观教学,对所学内容,容易接受,记忆深刻,并通过教具、学具的应用,实际事例引导学生观察思考,使学生能够正确理解所学知识的含义,在理解的基础上从感知经表象到认识,从而突破教学难点.
五、以形式多样的课堂练习突出重点,突破难点
精心设计课堂练习是提高教学质量的重要保证,因为学生是通过练习来进一步理解和巩固知识的,也必须通过练习,才能把知识转化成技能技巧,从而提高综合运用知识的能力.所谓精心设计练习,关键在于“精”,精就是指在新课上设计的练习要突出重点——新知识点.围绕知识重点多层次一套一套地让学生练习.
例如:“三位数乘多位数”新课知识重点是用乘数百位上的数去乘被乘数,乘积是多少个百,乘得的积的末位要写在积的百位上.这一个新知识是在学生掌握一、两位数乘多位数计算法则的基础上来学习的,因此,设计新课练习,要紧紧围绕新课知识重点,在学生原有的知识基础上设计以下练习题:
1.完成下列各题计算:
① 314 ② 537
1570 2148
目的:集中时间和注意力放在本节课重点上.
2.计算下列各题:
(1)541×632 (2)712×431
目的:a:乘数个位、十位上数字小,节省时间
b:重点放在本节课上
c:独立完成三位数乘多位数的计算
3.选择教材上练习题:
目的:通过在前两套计算题目的基础上,总结
4.思考题:
(1)5379×8641 (2)735×1324
目的:a:起到知识渗透、迁移的作用
b:培养学生思维的灵活性
因而,要突出教学重点,还应在设计授新课的练习题上下功夫.
综上所述,教师的教服务于学生的学,教师每备一节课,要动一番脑筋,花一番心血,认真研究教学大纲,深钻教材内容,并结合学生实际,把握教材内容,弄清重点、难点,深刻理解教材意图,合理安排教学环节,精心设计课堂设问,方可找出突出重点,突破难点的方法和最佳途径.
② 如何在数学教学中突破重难点
一、所谓教学重点,就是“在整个知识体系中处于重要地位和有突出作用的内容”.也就是学生必须掌握的基本知识和技能,如意义、法则、性质、计算方法还包括数量关系、解决问题的策略等.
教学难点,一般指对于大多数学生来说是理解和掌握起来感觉比较困难的关键性的知识点或容易出现混淆、错误的问题.\x0d教学重点来自于知识本身,是由于数学知识内在的逻辑结构而客观存在的;教学难点依赖于学生自身的理解和接受能力,二者都是由同一教学内容的教学目标所决定的.
二、研究教学重难点的意义何在\x0d可以用这样一句话概括:落实教学重点是学生掌握知识的前提,突破难点是教学成功的关键.而教师在教学过程中突破重难点的方法,往往是学生思维活跃、激发兴趣的催化剂.
三、突破重点、难点的几条主要策略
1.把握好教材是前提\x0d引导学生学会走路,首先自己要识途.要想在教学中做到突出重点、突破难点,第一是深钻教材,从知识结构上,抓住每节课的重点和难点.第二是备足学生,根据学生实际的认知水平,并考虑到不同学生认知结构的差异,把握好教学重点和难点.课前的精心准备、准确定位,就为教学时突出重点和突破难点提供了有利条件.
重点内容抓住主要特征一是应用广泛,二是与以后学习的关系最直接、最密切.这就是通常所说的新知识的生长点或新旧知识的连接点.
确定难点时,应注意两点:首先要设身处地地为学生着想,认真分析学生理解、掌握知识过程中的难处;其次要充分考虑学生认识和心理过程中可能出现的种种障碍.因此,我确定本节课的教学重点是认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点;教学难点是理解并掌握各种三角形的特征.
找准知识的生长点是条件
小学数学是系统性很强的学科.数学教学就是要借助于数学的逻辑结构,引导学生由旧入新,组织积极的迁移,促成由已知到未知的推理,认识简单与复杂问题的联系,不断完善认知结构.因此,新知识的形成都有其固定的知识生长点,找准知识的生长点,才能突出重点、突破难点.
我们可以依据以下3点找准知识生长点:(1)有的新知识与某些旧知识属同类或相似,要突出“共同点”,如除数是两、三位数的除法,是以除数是一位数的除法为基础的,后者是除数由一位变为两位、三位,出现了从被除数的哪一位除起,先看被除数的前几位的问题.但无论除数是几位数,试商方法都是一致的,即有共同点,就是教学中应抓住的;(2)有的新知识由两个或两个以上旧知识组合而成,要突出“连接点”,如“异分母分数加减法”是由同分母加减法的计算方法和通分两个旧知识组成的,它的关键问题是因为分数单位不同不能直接相加减,通分则成为两个旧知识的连接点;(3)有的新知识由某旧知识发展而来的,要突破“演变点”,如“有余数除法的验算”这部分知识,要以前面能整除的除法验算为基础,两类验算都要用“商和除数相乘”,后者演变的是“还要加上余数”.
本节课是在学生初步认识了三角形的基础上的进一步学习,所以教师始终抓住角和边的特征深入认识各种三角形这一“演变点”,开展教学活动,进而不断突破.\x0d3、采用合适的教学方法是关键\x0d《课程标准》指出:教师的教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教.教师要发挥主导作用,处理好讲授与自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验.\x0d因此根据学生实际,采用合适的教学方法是突出重点、突破难点的关键.常用的教学方法有:温故知新法(迁移法)、动手实践法、直观演示法、启发引导法、联系生活法、尝试法、比较法、发现法、转化法、求证法、游戏法等.
本课主要采用的是动手实践法、直观演示法、启发引导法、比较法、发现法、求证法、游戏法.如在找分类标准上,“刚才我们将屋子里的这些人按照不同的标准进行了分类,你打算按什么标准给这些三角形分类呢?”采用的是启发引导法;在自主探索、小组合作进行三角形分类活动时,采用的是动手实践法、比较法、发现法;认识各类三角形时,采用的是直观演示法、发现法、比较法、求证法和游戏法,特别是在突破“理解并掌握各种三角型特征”这一难点时,重点采用的是比较法、求证法和游戏法.在学生直观演示汇报中,老师发现学生在预习的基础上,虽已知道各种三角形名称及概念,但分类却不准确,说明学生根本没有理解其特征.于是老师以学定教,改变了预先的设计思路,顺应学生的思维,先让学生说出各种三角形的概念,再引导学生运用多种方法如比较法、求证法等进行验证,最后归纳、记忆.在这一过程中,学生通过看一看、找一找、分一分、议一议、比一比、量一量、说一说等,多种感官积极主动参与活动.由于经历体验的比较充分,因而从课堂学习效果来看,教师已经突破了教学重点和难点.但因在组织直观演示时耽搁了时间,又因学生的思维能力、表达能力不强,致使“活动体验,探究新知”的教学环节时间较长.
合理设计板书是途径\x0d板书是课堂教学的缩影,是揭示教学重点难点的示意图,也是把握重点、难点的辐射源,板书起着提纲挈领的作用,它是在吃透教材的基础上,根据教学要求、特点和学生的实际情况设计出来的,把提纲性、艺术性、直观性融为一体,既起到纲举目张的作用,又收到激发兴趣、启迪思维的效果.
精心设计练习是保障
精心设计课堂练习是提高教学质量的重要保证,学生通过练习进一步理解和巩固知识的,把知识转化成技能技巧,从而提高综合运用知识的能力.所谓精心设计练习,关键在于“精”,精就是指要突出重点——新知识点、强化难点——易混淆、难理解处.因此在备课时,要认真钻研教材上的习题,理解编排意图,明确习题的目的和作用,从而设计有层次、有坡度、有针对性的练习题.
本节课由于在探究过程中,有相应的即时练习内容和游戏活动,因此我在全课练习环节中,设计了三个层次的练习内容,分别是基本练习填空、变式练习判断、拓展练习解决问题.但因时间关系,所以只完成了即时练习,未能更好的体现这一环节的教学目的.
此外,处理重难点内容只靠教学的方式、方法和手段还不够,还须注意:第一,教师确定的难点不宜预先告诉或暗示学生.这样容易造成学生的心理压力.比如“这节课的内容很困难,不容易学懂,同学们要专心”“这个问题难,不要紧张”这类“话与愿违”的话不要说.第二,教学节奏宜缓慢,适当调整语速、语调和语气.特别是讲解难点内容时还要密切注视学生的表情,如果发现多数学生蹙眉茫然,或提出的问题无人作答、举手人数寥寥无几时,教师一方面要舒缓节奏,放慢语速,留出充分的时间让学生思考,并及时设台阶,给铺垫.另一方面用激励与信任的语气及时给以鼓励,帮助他们迎难而上.化难为易后要还原节奏,继续讲解非难点内容.
③ 数学教学如何突破重难点
1、所谓教学重点,就是“在整个知识体系中处于重要地位和有突出作用的内容”。也就是学生必须掌握的基本知识和技能,如意义、法则、性质、计算方法还包括数量关系、解决问题的策略等。 2、教学难点,一般指对于大多数学生来说是理解和掌握起来感觉比较困难的关键性的知识点或容易出现混淆、错误的问题。 教学重点来自于知识本身,是由于数学知识内在的逻辑结构而客观存在的;教学难点依赖于学生自身的理解和接受能力,二者都是由同一教学内容的教学目标所决定的。 二、研究教学重难点的意义何在 可以用这样一句话概括:落实教学重点是学生掌握知识的前提,突破难点是教学成功的关键。而教师在教学过程中突破重难点的方法,往往是学生思维活跃、激发兴趣的催化剂。 三、突破重点、难点的几条主要策略 1.把握好教材是前提 引导学生学会走路,首先自己要识途。要想在教学中做到突出重点、突破难点,第一是深钻教材,从知识结构上,抓住每节课的重点和难点。第二是备足学生,根据学生实际的认知水平,并考虑到不同学生认知结构的差异,把握好教学重点和难点。课前的精心准备、准确定位,就为教学时突出重点和突破难点提供了有利条件。 重点内容抓住主要特征一是应用广泛,二是与以后学习的关系最直接、最密切。这就是通常所说的新知识的生长点或新旧知识的连接点。 确定难点时,应注意两点:首先要设身处地地为学生着想,认真分析学生理解、掌握知识过程中的难处;其次要充分考虑学生认识和心理过程中可能出现的种种障碍。 因此,我确定本节课的教学重点是认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点;教学难点是理解并掌握各种三角形的特征。 2.找准知识的生长点是条件 小学数学是系统性很强的学科。数学教学就是要借助于数学的逻辑结构,引导学生由旧入新,组织积极的迁移,促成由已知到未知的推理,认识简单与复杂问题的联系,不断完善认知结构。因此,新知识的形成都有其固定的知识生长点,找准知识的生长点,才能突出重点、突破难点。 我们可以依据以下3点找准知识生长点:(1)有的新知识与某些旧知识属同类或相似,要突出“共同点”,如除数是两、三位数的除法,是以除数是一位数的除法为基础的,后者是除数由一位变为两位、三位,出现了从被除数的哪一位除起,先看被除数的前几位的问题。但无论除数是几位数,试商方法都是一致的,即有共同点,就是教学中应抓住的;(2)有的新知识由两个或两个以上旧知识组合而成,要突出“连接点”,如“异分母分数加减法”是由同分母加减法的计算方法和通分两个旧知识组成的,它的关键问题是因为分数单位不同不能直接相加减,通分则成为两个旧知识的连接点;(3)有的新知识由某旧知识发展而来的,要突破“演变点”,如“有余数除法的验算”这部分知识,要以前面能整除的除法验算为基础,两类验算都要用“商和除数相乘”,后者演变的是“还要加上余数”。 本节课是在学生初步认识了三角形的基础上的进一步学习,所以教师始终抓住角和边的特征深入认识各种三角形这一“演变点”,开展教学活动,进而不断突破。 3、采用合适的教学方法是关键 《课程标准》指出:教师的教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。 因此根据学生实际,采用合适的教学方法是突出重点、突破难点的关键。常用的教学方法有:温故知新法(迁移法)、动手实践法、直观演示法、启发引导法、联系生活法、尝试法、比较法、发现法、转化法、求证法、游戏法等。 本课主要采用的是动手实践法、直观演示法、启发引导法、比较法、发现法、求证法、游戏法。如在找分类标准上,“刚才我们将屋子里的这些人按照不同的标准进行了分类,你打算按什么标准给这些三角形分类呢?”采用的是启发引导法;在自主探索、小组合作进行三角形分类活动时,采用的是动手实践法、比较法、发现法;认识各类三角形时,采用的是直观演示法、发现法、比较法、求证法和游戏法,特别是在突破“理解并掌握各种三角型特征”这一难点时,重点采用的是比较法、求证法和游戏法。在学生直观演示汇报中,老师发现学生在预习的基础上,虽已知道各种三角形名称及概念,但分类却不准确,说明学生根本没有理解其特征。于是老师以学定教,改变了预先的设计思路,顺应学生的思维,先让学生说出各种三角形的概念,再引导学生运用多种方法如比较法、求证法等进行验证,最后归纳、记忆。在这一过程中,学生通过看一看、找一找、分一分、议一议、比一比、量一量、说一说等,多种感官积极主动参与活动。由于经历体验的比较充分,因而从课堂学习效果来看,教师已经突破了教学重点和难点。但因在组织直观演示时耽搁了时间,又因学生的思维能力、表达能力不强,致使“活动体验,探究新知”的教学环节时间较长。 4、合理设计板书是途径 板书是课堂教学的缩影,是揭示教学重点难点的示意图,也是把握重点、难点的辐射源,板书起着提纲挈领的作用,它是在吃透教材的基础上,根据教学要求、特点和学生的实际情况设计出来的,把提纲性、艺术性、直观性融为一体,既起到纲举目张的作用,又收到激发兴趣、启迪思维的效果。 5、精心设计练习是保障 精心设计课堂练习是提高教学质量的重要保证,学生通过练习进一步理解和巩固知识的,把知识转化成技能技巧,从而提高综合运用知识的能力。所谓精心设计练习,关键在于“精”,精就是指要突出重点——新知识点、强化难点——易混淆、难理解处。因此在备课时,要认真钻研教材上的习题,理解编排意图,明确习题的目的和作用,从而设计有层次、有坡度、有针对性的练习题。 本节课由于在探究过程中,有相应的即时练习内容和游戏活动,因此我在全课练习环节中,设计了三个层次的练习内容,分别是基本练习填空、变式练习判断、拓展练习解决问题。但因时间关系,所以只完成了即时练习,未能更好的体现这一环节的教学目的。 此外,处理重难点内容只靠教学的方式、方法和手段还不够,还须注意:第一,教师确定的难点不宜预先告诉或暗示学生。这样容易造成学生的心理压力。比如“这节课的内容很困难,不容易学懂,同学们要专心”“这个问题难,不要紧张”这类“话与愿违”的话不要说。第二,教学节奏宜缓慢,适当调整语速、语调和语气。特别是讲解难点内容时还要密切注视学生的表情,如果发现多数学生蹙眉茫然,或提出的问题无人作答、举手人数寥寥无几时,教师一方面要舒缓节奏,放慢语速,留出充分的时间让学生思考,并及时设台阶,给铺垫。另一方面用激励与信任的语气及时给以鼓励,帮助他们迎难而上。化难为易后要还原节奏,继续讲解非难点内容。
④ 怎样把握数学教学重难点
小学数学这门学科有着极强的抽象性与系统性,各类知识有机构成完善的知识体系,如果其中一个重点或者难点知识,学生没有把握,就会影响其整体知识的构建,因此,在小学数学中,不仅要重视基础知识的传授,还要把握好重点与难点。
一、从全局角度把控重点与难点
要把握重点、突破难点,必须要搞清楚什么是重点、什么是难点,只有掌握这一问题,教学活动才能够具备针对性。教学重点,就是教学内容中具有突出地位的教学内容,在后续的知识点中,应用十分广泛,如各种法则、概念、策略、性质等;难点就是根据学生的认知水平与知识知识来看,多数学生理解起来都存在困难的知识。
重点是客观存在的,而教学重点则根据学生的实际情况,主观存在,作为教师,必须要明确具体的难点和重点知识。
首先,把握教材,处理好各类知识点的联系。教材是重点和难点的起源,也是学生学习和教师教学的重点依据,作为教师,要深入研读教材,挖掘出教材中的核心知识点,从全局上把握重点,做到胸有成竹,这样才能够提高小学数学的教学有效性。
其次,根据学生具体情况来确定重点。
每一个学生都是独立存在的个体,他们的生活背景不同,学习能力、认知能力都有所差异,因此,我们必须要了解每个班级学生的基础知识水平,严格按照因材施教的原则开展教学。在具体的教学活动中,要注意观察学生的表现,建立成长备案,查看学生的知识接收能力与学习变化,满足每一个层次学生的学习需求,及时根据学生的学习状态调整重点和难点。
二、注重数学知识之间的迁移
每一个数学知识点之间,都不是独立存在的,而是具有客观的联系,如果将其割裂开来,数学课堂无疑是低效的,也会影响学生的知识掌握情况。
小学阶段的认知活动是一个从简到繁的过程,需要基于特定的知识基础上,要帮助学生突破重点和难点知识,必须要注重数学知识的迁移。
新知识的教学要以旧知识作为基础,找到两者的衔接之处,促进知识之间的迁移,有了以往学习过的知识作为铺垫,学生学习起来就容易得多。
如,在关于《平行四边形面积》的教学中,其中的重点和难点就是面积的推导,在学习时,可以先复习长方形、三角形面积求解方式,引导学生思考,看平行四边形与自己以前学习过的哪个图形相似,将其转化为自己学习过的一个图形。经过对比与分析后,学生就可以知道,平行四边形与自己以前学习过的长方形有着很多相似之处,这样推导起来就变得更加容易了,教学难点与重点也得到了很好的突破。
三、借助多媒体突破难点与重点知识
多媒体技术的应用为小学数学教学带来了全新的生机,合理应用多媒体教学,
可以改变传统课堂中粉笔+教材+黑板的教学模式,将知识点用形象趣味的视频、图片、声音、文字来展示出来,让学生的各类感官都可以参与进来,将抽象的数学知识形象化,将静止的图象生动形象的为学生展示出来。如,在关于《长方体旋转》这一课的教学中,可以利用多媒体播放关于长方体展开的样子,让学生认识到,一个长方体是由六个面组成的,且这六个面之间是两两相对的,这样,学生就会对这一图形形成全面的认识,更好的解决了难点和重点知识,锻炼了学生的空间思维能力,让他们不再惧怕几何知识。
四、利用生长点来解决重点与难点
实施证明,任何一个新知识的产生,都有着一定的知识生长点,新知识和就知识之间,有着一些相似之处,在教学时,要突出两者之间的“共同点”与“连接点”,在讲解时,注意与学生已有的生活相联系,让学生调动起自己头脑中的认知概念,
以此来更好的理解数学难点和重点。
例如,在《平均分》的教学中,可以提前准备一些物品,将其平均分为数份,让学生参与到“平均分”的具体实践中,最后,让学生采用不同的练习方法,强化对相关知识点的理解。
此外,在日常教学中,要重视对比,利用类比和分析来辨析容易混淆的知识点,避免新知识的学习对原有知识产生干扰。
例如,在《化简分》的教学中,可以与《求比值》进行对比,前者是为了得到整数比,而后者可以写成小数和分数,这样对比下来,学生就很容易理解了。作为教师,要发挥主导作用,处理好讲授与自主学习的关系。
通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。
在小学数学学科中,有大量的重点和难点知识,关于重点与难点知识的教学,并非是一成不变的,在日常教学中,我们要留心观察,在备课方面多动脑筋,钻研教材,结合学生的具体情况把握重点、突破难点,科学安排教学活动,精心设计提问,找到解决重点和难点知识的关键点。
⑤ 如何把握小学数学重点难点教学
数学重点难点教学一
注重数学知识之间的迁移
每一个数学知识点之间,都不是独立存在的,而是具有客观的联系,如果将其割裂开来,数学课堂无疑是低效的,也会影响学生的知识掌握情况。小学阶段的认知活动是一个从简到繁的过程,需要基于特定的知识基础上,要帮助学生突破重点和难点知识,必须要注重数学知识的迁移。新知识的教学要以旧知识作为基础,找到两者的衔接之处,促进知识之间的迁移,有了以往学习过的知识作为铺垫,学生学习起来就容易得多。
如,在关于《平行四边形面积》的教学中,其中的重点和难点就是面积的推导,在学习时,可以先复习长方形、三角形面积求解方式,引导学生思考,看平行四边形与自己以前学习过的哪个图形相似,将其转化为自己学习过的一个图形。经过对比与分析后,学生就可以知道,平行四边形与自己以前学习过的长方形有着很多相似之处,这样推导起来就变得更加容易了,教学难点与重点也得到了很好的突破。
借助多媒体突破难点与重点知识
多媒体技术的应用为小学数学教学带来了全新的生机,合理应用多媒体教学,可以改变传统课堂中粉笔+教材+黑板的教学模式,将知识点用形象趣味的视频、图片、声音、文字来展示出来,让学生的各类感官都可以参与进来,将抽象的数学知识形象化,将静止的图象生动形象的为学生展示出来。
如,在关于《长方体旋转》这一课的教学中,可以利用多媒体播放关于长方体展开的样子,让学生认识到,一个长方体是由六个面组成的,且这六个面之间是两两相对的,这样,学生就会对这一图形形成全面的认识,更好的解决了难点和重点知识,锻炼了学生的空间思维能力,让他们不再惧怕几何知识。
数学重点难点教学二
以旧知识为生长点突破重点、难点。
小学数学学科的特点之一就是系统性很强,每项新知识往往和旧知识紧密相连,新知识就是旧知识的延伸和发展,旧知识就是新知识的基础和生长点。有时新知识可以由旧知识迁移而来,可同时它又成为后续知识的基础。因此,数学知识点就像一根根链条节节相连、环环相扣。善于捕捉数学知识之间的衔接点,自觉地以“迁移”作为一种帮助学生学习的方法,以旧引新、旧中蕴新,组织积极的迁移,就不难实现教学重、难点的突破了。
如在学习圆的面积时,认识圆的面积之后,鼓励学生大胆质疑。这样学生自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的.精髓。
认真备课,吃透教材突破教学重点、难点。
提高数学课堂教学的实效性,关键在于课要上得充实、扎实,做到重点突出、难点突破、落实“双基”。而要做到这一点就需要教师要切实把握好《数学课程标准》的目标要求,课前必须认真钻研教材,熟悉教材的内容结构、编排意图和要求,把握教材的要点、特点、知识脉络,力求真正吃透教材,从学生已有的知识和生活经验出发,进行认真细致的学情分析,在符合课程标准理念的条件下,对教材进行恰当灵活的处理,精心预设教学环节,备好课,做到“教路”和“学路”心中有数,以保证课堂教学的实效性。
教学重点的形成与数学知识内在的逻辑结构有关,所以教师就要认真阅读教材,精读教师用书,把握知识的上下联系,找出本节课教学中有突出地位和作用的知识点,这就找出了教学重点。教学难点一方面老师要根据自己的经验,另一方面要经常换位思考,从学生的角度来看所要教学的内容,根据学生的认知特点,找出学生学习比较困难的知识点,这就是找出了教学的难点。
数学重点难点教学三
1.把握好重点和难点是前提。
通过上文的分析,我们可以得出这样的结论:要想在教学中做到突出重点、突破难点,教师首先应深钻教材,从知识结构上抓住各章节和每节课的重点和难点;其次应备足学生,根据学生实际的认知水平,并考虑到不同学生认知结构的差异,把握好教学重点和难点。教师在课前精心准备、准确定位,能为教学时突出重点和突破难点提供有利条件。
2.找准知识的生长点是条件。
小学数学是系统性很强的学科。教师要借助数学的逻辑结构,引导学生由旧入新,进行积极的迁移,促成由已知到未知的推理,认识简单与复杂问题的联系,不断完善认知结构。新知识的形成都有其固定的知识生长点,教师只有找准知识的生长点,才能突出重点、突破难点。教师可依据以下三点找准知识生长点:(1)有的新知识与某些旧知识属同类或相似,要突出“共同点”,进而突破重、难点;(2)有的新知识由两个或两个以上旧知识组合而成,要突出“连接点”,进而突破重、难点;(3)有的新知识由某旧知识发展而来的,要突出“演变点”,进而突破重、难点。如教学“解决问题的策略”,虽然每个策略都有其适用的题目,但是在形成新策略的过程中教师要综合应用已有的策略,如学习替换与假设策略时要用到画图、列表等策略,以综合法与分析法贯穿始终。所以这一单元的教学是数学认知结构改造的过程,教师要突出“演变点”,进而突破重、难点。
3.采用合适的教学方式是关键。
《全日制义务教育数学课程标准(修改稿)》指出:教师的教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式教学和因材施教。教师要发挥主导作用,处理好讲授与自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。根据学生实际,采用合适的教学方式是突出重点、突破难点的关键。如教学“解决问题的策略”时,教师可采用的教学方式是:独立思考―尝试解题―合作交流―比较归纳―反思小结――形成体验。这样的教学方式,能使学生在解决问题的过程中感悟解题策略,形成解题策略,体会策略价值,自觉应用策略解决问题,真正做到突出重点和突破难点。
⑥ 初中数学三年应该如何掌握重难点知识点
数学学习:
1、以本为本,掌握基础知识;
2、做好知识点、重难点梳理;
3、做好每单元思维导图,确保掌握书本知识;
4、多动手证实数理公式,通过实践获取比死记硬背效果更好;
5、多做些题目,不是为了刷题,而是为看看出题老师为什么这么出题,想考哪些知识点,还能结合哪些知识点考察等等。
另外,注意培养数学学习兴趣。
⑦ 小学数学教学中如何抓住重点突破难点
数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.
(同学们开讲)
学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.
⑧ 数学知识版块重、难点的关键问题所在与解决方法
数学:学透三大知识版块重、难点的关键所在
高一上学期的数学内容并不多,但是难度不低。难度并不在于知识点的深度和综合能力,而在于从初中相对具体形象的数学学习一下进入高中抽象的,与生活似乎关系不大的学习,很多同学表现出非常大不适应。因此,如果觉得高一数学“难”,复习的重点,应当放在分析为什么自己觉得学习过的知识点“难”上。
难点一:抽象函数
F规则的含义虽然看起来简单,但如果理解不深刻,对于后面的解题有很大的影响。解决抽象函数难点的思路主要有这样两条:
(1)将抽象函数的内容与具体函数的性质结合起来。抽象函数作为理解函数的一个上位的要求,对于所有的具体函数都具有指导意义。高一学习的指数,对数和幂三种函数的具体性质,都是抽象函数性质在具体函数中的表现。函数的定义域,值域,单调性,奇偶性,这些内容既是抽象函数的核心内容,又是具体函数具体性质的表现。结合起来记忆,效果更好。
(2)所有和抽象函数相关的综合问题,一定首先想办法将抽象函数的条件化为具体条件,转化的方法,就是利用抽象函数的性质。很多综合题中都会出现抽象函数的条件,对于这种题目,首先要解决的就是将这些条件中的f去掉。比如f(a)<f(b),保留f,无论a与b如何简单,不利用单调性条件去掉f,问题都解决不了。
难点二:三角函数
这一部分的重点是一定要从初中锐角三角函数的定义中跳出来。在教学中,我注意到有些学生仍然在遇到三角函数题目的时候画直角三角形协助理解,这是十分危险的,也是我们所不提倡的。三角函数的定义在引入了实数角和弧度制之后,已经发生了革命性的变化,sinA中的A不一定是一个锐角,也不一定是一个钝角,而是一个实数——弧度制的角。有了这样一个思维上的飞跃,三角函数就不再是三角形的一个附属产品(初中三角函数很多时候依附于相似三角形),而是一个具有独立意义的函数表现形式。
既然三角函数作为一种函数意义的.理解,那么,它的知识结构就可以完全和函数一章联系起来,函数的精髓,就在于图象,有了图象,就有了所有的性质。对于三角函数,除了图象,单位圆作为辅助手段,也是非常有效——就好像配方在二次函数中应用广泛是一个道理。
三角恒等变形部分,并无太多诀窍,从教学中可以看出,学生听懂公式都不难,应用起来比较熟练的都是那些做题比较多的同学。题目做到一定程度,其实很容易发现,高一考察的三角恒等只有不多的几种题型,在课程与复习中,我们也会注重给学生总结三角恒等变形的“统一论”,把握住降次,辅助角和万能公式这些关键方法,一般的三角恒等迎刃而解。关键是,一定要多做题。
难点三:向量部分
这部分其实是这学期最简单的部分。简单的原因是,以前从来没有学过,初次接触,考试不会太难。这部分的复习也最为轻松——围绕向量的几何表示,代数表示和坐标表示理解向量的各种运算法则。
只要掌握了这些运算模式,几乎所有问题都迎刃而解。
难点四:综合题型
压轴题基本上,都是以函数一章作为最核心的知识载体,中间掺杂向量和三角的运算。解决这样的题目,方法几乎是固定的,那就是首先利用抽象函数性质,将带有f的条件化为不带有f的条件,然后利用三角与向量的运算化简或证明。非压轴题出题方法可能更自由,但是综合性往往没有太强,仍然属于各个板块内的综合。
千余字无法完全概括高一上学期数学复习的全部内容,这些提纲挈领式的复习建议也是再教学中发现学生遇到问题最多的地方。最后,想和大家分享的是,复习很重要,重要在它可以锦上添花;平时学习更重要,因为高中数学,只靠复习,没有办法获得“雪中送炭”的效果。
祝各位同学在期末考试中取得好成绩,更祝大家高一基础扎实,高三成绩优异!
⑨ 数学课堂教学中怎样突破重难点
小学数学教学内容包罗万象,每堂课都有它自己的教学重点和教学难点.教学难点是学生在课堂上最容易疑惑不解的知识点,是学生认知矛盾的焦点,它犹如学生学习途中的绊脚石,阻碍着学生进一步获取新知.化解难点、解除疑惑,是教学过程顺畅有效的重要保证.因此,在一定意义上来说,教学难点本身也属于教学重点.教学重点就是指在教学过程中学生必须掌握的基础知识和基本技能,如概念、性质、法则、计算等等.为了帮助学生解决重点、理解难点,使感性知识理性化,实现知识的长久记忆和灵活运用,教师在突破重难点时要讲究教法的直观、形象和具体,要讲究新旧知识之间的前后联系,要补充相关的感性素材.教师的教学只有结合学生实际,抓住重点,突破难点,教学效果才能得到提高.
下面谈谈笔者在教学实践中突破教学重难点的几点做法:
一、抓住强化感知参与,运用直观的方法突出重点、突破难点
直观教学在小学数学教学中具有重要的地位.鉴于小学生的思维一般地还处在具体形象思维阶段,而在小学数学教学中,他们要接触并必须掌握的数学知识却是抽象的,这就需要在具体与抽象之间架设一座桥梁.直观正是解决从具体到抽象这个矛盾的有效手段.在教学中,教师应多给学生用学具摆一摆、拼一拼、分一分等动手操作的机会,使学生在动手操作中感知新知、获得表象,理解和掌握有关概念的本质特征.如在教学中,可让学生通过动手画、量、折叠、剪拼几何图形,做一些立方体模型,使学生感知几何形体的形成过程、特征和数量关系.如学生在用圆规画圆时,通过固定一点、确定不变距离、旋转一周等操作,对圆心、圆的半径、圆的特征和怎样画圆就会有较深刻的感性认识.
二、抓住数学来源于生活,运用联系生活的方法突出重点、突破难点
现代教育观指出:“数学教学,应从学生已有的知识经验出发,让学生亲身经历参与特定的教学活动,使学生感受数学与日常生活的密切联系,从中获得一些体验,并且通过自主探索、合作交流,将实际问题抽象成数学模型,并对此进行理解和应用.”所以,我们数学应从小学生已有的生活体验出发,从生活中“找”数学素材并多让学生到生活中去“找”数学、“想”数学,使学生真切感受到“生活中处处有数学”.如我们都知道“利息”知识源于生活,在日常生活中应用广泛.我在教学“利息”时,让学生通过5000元存入银行,计算整存整取三年期、整存整取五年期,体会到期后会取得多少利息等.这样从学生的实际出发,在课堂中充分让学生“做主”,引导学生从生活实际中理解了有关利息、利率、本金的含义,体会了数学的真实.只有让数学走进生活,学生才会愿学、乐学,从而激发起学生学数学、用数学的热情.
三、抓住小学生的特点,运用游戏的方法突出重点、突破难点
小学生的特点是好奇好动,对游戏有很大的兴趣.一般情况下,他们的注意只能保持15分钟左右.在教学中,如果组织学生通过灵活多变的游戏活动来学习数学知识,他们就会对数学学习产生浓厚的兴趣,把注意力长时间地稳定在学习对象上来,使教学收到很好的效果,而且课堂气氛妙趣横生,师生情感融为一体.如:学习“倍”的概念时,和学生一起做拍手游戏.教师首先拍2下,然后拍4个2下,让学生回答第二次拍的是第一次的几倍.接着,按要求师生对拍,进而同桌同学互拍.这样的教学过程,学生始终精神集中、情绪高涨.这种简单易行的游戏,深受学生喜爱,从而达到了教学的目的.
四、抓住知识间的异同,运用比较的方法突出重点、突破难点
着名教育家乌申斯基认为:“比较是一切理解和思维的基础,我们正是通过比较来了解世界上的一切的.”小学数学中有许多内容既有联系又有区别,在教学中充分运用比较的方法,有助于突出教学重点、突破教学难点,使学生容易接受新知识,防止知识的混淆,提高辨别能力,从而扎实地掌握数学知识,发展逻辑思维能力.如:课堂教学中,对学生回答问题或板演,有些教师总是想方设法使之不出一点差错,即使是一些容易产生典型错误的稍难问题,教者也有“高招”使学生按教师设计的正确方法去解决,造成上课一听就懂、课后一做就错的不良后果.这样其实是教师对教学难点没吃透、教学中教学难点没突破的反映.教师在教学中,可通过一两个典型的例题,让学生暴露错解,师生共同分析出错误的原因,比较正、误两种解法,从正反两个方面吸取经验教训,使学生真正理解重难点,灵活运用新知.
五、抓住知识间的联系,采用转化的策略突破重点和难点
转化的方法就是利用已有的知识和经验,将复杂的转化为简单的,将未知的转化为已知的,将看来不能解答的转化成能解答的,简单地说就是化未知为已知、化繁为简、化曲为直等.在教学中,教师如能做到“化新为旧”,抓住知识间的“纵横联系”,帮助学生形成知识网络,逐步教给学生一些转化的思考方法,让学生掌握多种转化途径,就能掌握解题策略,提高解题能力.以六