1. 数学里面什么是导数怎么理解导数
导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。
右上图为函数y=(x) 的图象,函数在x_0处的导数′(x_0) = lim{Δx→0} [(x_0 +Δx) -(x_0)] /Δx。如果函数在连续区间上可导,则函数在这个区间上存在导函数,记作′(x)或 dy/ dx。
导数定义
一、导数第一定义
设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时相应地函数取得增量 △y = f(x0 + △x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义
二、导数第二定义
设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时相应地函数变化 △y = f(x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第二定义
三、导函数与导数
如果函数 y = f(x) 在开区间I内每一点都可导就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数 y = f(x) 的导函数记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。
折叠编辑本段导数的起源
一.早期导数概念----特殊的形式
大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。
二.17世纪----广泛使用的“流数术”
17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”;他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要着作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三.19世纪导数----逐渐成熟的理论
1750年达朗贝尔在为法国科学家院出版的《网络全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四.实无限将异军突起微积分第二轮初等化或成为可能 微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。
就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。
光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。
折叠编辑本段导函数
一般地假设一元函数 y=f(x )在 点x0的某个邻域N(x0δ)内有定义当自变量取的增量Δx=x-x0时函数相应增量为 △y=f(x0+△x)-f(x0)。若函数增量△y与自变量增量△x之比当△x→0时的极限存在且有限就说函数f(x)在x0点可导并将这个极限称之为f在x0点的导数或变化率。
“点动成线”若函数f在区间I 的每一点都可导便得到一个以I为定义域的新函数记作 f'(x) 或y'称之为f的导函数不能简称为导数.
折叠编辑本段几何意义
函数y=fx在x0点的导数f'x0的几何意义表示函数曲线在P0[x导数的几何意义0fx0] 点的切线斜率
导数的几何意义是该函数曲线在这一点上的切线斜率.
折叠编辑本段科学应用
导数与物理几何代数关系密切.在几何中可求切线在代数中可求瞬时变化率在物理中可求速度加速度.
导数亦名纪数、微商微分中的概念是由速度变化问题和曲线的切线问题矢量速度的方向而抽象出来的数学概念.又称变化率.
如一辆汽车在10小时内走了 600千米它的平均速度是60千米/小时.但在实际行驶过程中是有快慢变化的不都是60千米/小时.为了较好地反映汽车在行驶过程中的快慢变化情况可以缩短时间间隔设汽车所在位置s与时间t的关系为: s=ft
那么汽车在由时刻t0变到t1这段时间内的平均速度是:
[f(t1)-f(t0)]/[t1-t0]
当 t1与t0无限趋近于零时汽车行驶的快慢变化就不会很大瞬时速度就近似等于平均速度 .
自然就把当t1→t0时的极限lim[f(t1)-f(t0)]/[t1-t0] 作为汽车在时刻t0的瞬时速度这就是通常所说的速度.这实际上是由平均速度类比到瞬时速度的过程 如我们驾驶时的限“速” 指瞬时速度
2. 数学导数有什么作用,实际用途是什么
导数作用:
1.
求一些实际问题的最大值与最小值
2.还可以求切线的斜率。
导数的定义,我们应注意以下三点:
(1)△x是自变量x在
x0处的增量(或改变量).
(2)导数定义中还包含了可导或可微的概念,如果△x→0时,△y
/△x有极限,那么函数y=f(x)在点
x0处可导或可微,才能得到f(x)在点
x0处的导数.
(3)如果函数y=f(x)在点
x0处可导,那么函数y=f(x)在点x0
处连续(由连续函数定义可知).反之不一定成立.例如函数y=|x|在点x=0处连续,但不可导.
3. 数学中“导数”代表什么
导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。
4. 高等数学导数的定义
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
中文名
导数
外文名
Derivative
提出者
牛顿、莱布尼茨
提出时间
17世纪
应用领域
数学(微积分学)、物理学
限时折扣
高中数学从入门到精通:导数(高考数学压轴题从入门到精通)
共82集
2.9万热度
限时折扣
导数中“参数分类”的四大标准(含讲义)
共20集
4392热度
快速
导航
定义
公式
导数与函数的性质
导数种别
应用
历史沿革
起源
大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。[1]
发展
17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要着作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。[1]
成熟
1750年达朗贝尔在为法国科学家院出版的《网络全书》第四版写的“微分”条目中提出了关于导数的一种观点,可以用现代符号简单表示: 。
1823年,柯西在他的《无穷小分析概论》中定义导数:如果函数y=f(x)在变量x的两个给定的界限之间保持连续,并且我们为这样的变量指定一个包含在这两个不同界限之间的值,那么是使变量得到一个无穷小增量。19世纪60年代以后,魏尔斯特拉斯创造了ε-δ语言,对微积分中出现的各种类型的极限重加表达。
微积分学理论基础,大体可以分为两个部分。一个是实无限理论,即无限是一个具体的东西,一种真实的存在;另一种是潜无限理论,指一种意识形态上的过程,比如无限接近。
就数学历史来看,两种理论都有一定的道理,实无限就使用了150年。
5. 导数的导数有什么意义
导数的导数即二阶导数,其在数学和物化上都有重要意义。
1.在数学上,二阶导数可用于判断函数图像的凸凹性。例如y=x^3,则y′=3x^2,y"=6ⅹ,即当x﹥0时,y"﹥0,此时函数图像为凹函数,当x<0时,y"<0,此时函数图像为凸函数。
2.在物理中,二阶导数反映的是加速度。因为位移S对时间t的一阶导数即为速度v,v再对时间t的导数就是二阶导数,为加速度。
6. 导数的意义是什么
物理意义:经常表示瞬间的变化率,在物理量中最常用的有瞬时速度和瞬时加速度。导数的几何意义:表示曲线在点处的切线的斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数与函数的性质:
1、单调性
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
2、凹凸性
可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。
如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。
7. 导数的导数是什么意思什么含义什么作用(具体点)
含义:导数的本意是“差分”,英文符号D.
导数的数学含义是两个变量的变化量之比;几何含义是曲线上点的斜率。
作用:1.
判断函数的单调区间:d>0,单调递增;d<0,单调递减;
2.判断曲线形状:二阶导小于等于0,上凸;二阶导大于等于0
上凹;
3.求极值和最值:一阶导数d=0,可能为极值点;同时二阶导数>0
,极小值点;
同时二阶导数<0,
为极大值点;
8. 数学中解题有时要求导 求导的实质是什么 为什么要求导
导数的定义是过该点的直线的斜率
在做题中有时要求导,也是为了解答起来方便,导数的应用比如求一条2次以上函数的曲线的切线,求一个函数在某个区间上的极大值,极小值,判断函数的一些性质等等,尤其以判断函数的性质最为重要,导函数也是函数,只不过研究它比研究原函数方便多,因为它已经被降幂。