导航:首页 > 数字科学 > 数学课程的核心概念有哪些

数学课程的核心概念有哪些

发布时间:2022-12-25 00:17:03

① 数学新课标中提出的10个核心概念如何理解

数学课程标准(实验稿)》在“课程设计思路”中提出了六个核心概念:“数感、符号感、空间观念、统计观念、应用意识和推理能力”,本次修订对此做了调整,共提出十个数学课程与教学应当注重发展的核心概念,包括数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,以及应用意识和创新意识。同时,对每一个核心概念都做出了较为明确的阐述,有助于教师更好地把握课程目标、深刻地理解课程内容,同时对于数学课程内容的选择和教学方法的改革也有重要的指导意义。
事实上,把上面这些词统称为“概念”并不确切,因为这些词所要表达的东西并不是客观存在,甚至很难清晰地表达这些词的内涵,因此修订后的数学课程标准中没有对这些词本身统一给出的确切表达。数学课程标准之所以提出这些词,希望表达的是认识一类数学概念的思维模式,而正确地把握这些思维模式,对理解相关的数学概念是非常重要的。

② 义务教育数学课程五大核心理念包括

义务教育数学课程五大核心理念包括:

数学是研究数量关系和空间形式的科学。

学生通过学习义务教育数学课程,掌握适应现代生活及进一步学习必备的基础知识和基本技能、基本思想和基本活动经验;激发学习数学的兴趣,养成独立思考的习惯和合作交流的意愿;发展实践能力和创新精神,形成核心素养。

③ 义务教育阶段数学课程标准的十大核心概念

在《义务教育阶段数学课程标准(修订稿)》中十个核心概念的内涵 在标准当中,设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。1、数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。2、 符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。知道使用符号可以进行运算和推理,另外可以获得一个结论,获得一个结论具有一般性。符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要的形式。3、 空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。4、 几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。5、 数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。6、 运算能力是指能够根据法则和运算正确的进行运算的能力。培养运算能力有助于学生理解运算的算力,寻求合理、简洁的运算途径解决问题。7、 推理是数学的基本思维方式,也是人们学习和生活当中,经常使用这样一种思维方式,推理一般包括合情推理和演绎推理。演绎推理是从已知的事实出发,按照一些确定的规则,然后进行逻辑的推理,进行证明和计算,是这样一个过程。换句话说,从思维形式的角度,是从一般到特殊这样一个过程,在几何的证明当中,实际上都是这样一种推理的形式。合情推理是从已有的事实出发,评论一些经验、直觉,通过归纳和类比等等这样一些形式,来进行推断,来获得一些可能性结论这样一种思维方式。和演绎推理相不一样的地方,它往往是从特殊到一般这样一种推理,所以合情推理得到的结论,知道不一定是对的,通常可能称之为猜想、推测是一个可能性结论。8、 模型思想的建立,使学生体会和理解数学与外物世界联系的基本途径,建立和求解模型的过程包括,从现实生活或具体情境中,抽象出数学问题,用数学符号,建立方程、不等式、函数等数学模型的数量关系和变化规律,然后求出结果,并讨论结果的意义。这些内容的学习有助于学生初步的形成模型的思想,提高学习数学的兴趣和应用意识。9、 应用意识就是强调数学和现实的联系,数学和其他学科的联系,如何运用所学到的数学,去解决现实中和其他学科中的一些问题,当然也包括运用一部分数学,去解决另一个数学里的问题。10、 创新意识培养是现代数学教育的基本任务,应体现在数学教与学的过程之中,学生自己发现和提出问题是创新的基础,独立思考、学会思考是创新的核心。

④ 10个数学核心概念

10个数学核心概念

数学核心概念包括:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。 这些核心概念让数学形成一个整体,是数学最要紧、最本质的东西,不仅是学习的目标,也应该把它和学习内容有机的结合起来。是最应该培养的数学素养,是学习学好数学的基础。

1、数感

    是指关于数与数量、数量关系、运算结果估计等方面的感悟;建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。 学生数感的培养,需要积累经验,逐步建立和发展。低年级可以结合现实生活情境和实例,多经历有关数的活动过程,引导学生反复的练习实物、表象(心象)、数字的对应,反复的经历、区分数、量,逐步积累数感经验;小学高年级可以引导学生在较复杂的数量关系和运算问题中提升数感,发展更为良好的数感品质。

2.符号意识

符号就是针对具体事物对象而抽象概括出来的一种简略的记号或代号。数字、字母、图形、关系式等等构成了数学的符号系统;符号意识是在感知、认识、运用数学符号方面所作出的一种主动性反应,它也是一种积极的心理倾向。  一是能够理解并且运用符号表示数、数量关系和变化规律;二是使用符号进行运算和推理的符号“操作”意识;如对具体问题的符号表示、变量替换、关系转换、等价推演、模型抽象及模型解决等;三是理解符号的使用是数学表达和进行数学思考的重要形式;符号意识在整个数学学习中很重要。

3.空间观念

  是指对物体及其几何图形的形状、大小、位置关系及其变化建立起来的一种感知和认识,空间想象是建立空间观念的重要途径。没有空间观念和空间想象力,几乎很难谈发明与创造。

  空间观念的建立,包括四个方面:一是根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体(即实物与图形的关系);二是想象出物体的方位和相互之间的位置关系(即方向感);三是描述图形的运动和变化(即图形运动、变化);四是依据语言的描述画出图形等(即画图能力)。

  对几何图形的认识、证明中对图形特点的观察、根据他人的描述画出图形的过程都需要想象;所以积累这些经验,对观察和描述;想象和再现,都是互相促进的练习和强化空间观念。

4.几何直观

主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。

    几何直观概念包括:一让学生逐步养成画图的好习惯;二重视变换——让图形动起来;三学会从“数”与“形”两个角度认识数学;四掌握、运用一些基本图形解决问题。特别是如果孩子养成了画图的习惯之后,很轻易的画熟练了,他会发展到由笔在纸上画转化到看到文字题目能同步在脑子里把文字转化成画面,那样他的左右脑就协调的发展了。

5.数据分析观念

  了解现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断,体会数据中蕴含着信息;了解对于同样的数据可以根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面,对于同样的事物每次收到的数据可能不同;另一方面,只要有足够的数据,就可以从中发现规律。

6.运算能力

  根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。

运算的正确、有据、合理、简洁,是运算能力的主要特征 。  运算能力并非一种单一的、 孤立的数学能力,而是运算技能与逻辑思维等的有机整合。运算的巧和快,只是基础。运算能力不仅包括运算技能的逐步提高,还包括运算思维素质的提升和发展。由具体到抽象,从法则到算理,从常量到变量,从单向思维到逆向、多向思维,这个能力对深度学习数学,至关重要。

7.推理能力  推理是数学的基本思维方式。推理能力是学生数学素养的重要内容,也是数学学习的重要目标;数学思维和问题解决的过程中,两种推理(合情推理和演绎推理)功能不同、相辅相成——合情推理用于探索思路,发现结论;演绎推理用于证明结论。

8.模型思想  采用形式化的数学语言,抽象地、概括地表述所研究对象的主要特征、关系所形成的一种数学结构。 用字母、数字及其他数学符号建立起来的代数式、关系式、方程、函数、不等式,及各种图表、图形等都是数学模型。  模型思想的建立,是学生体会和理解数学与外物世界联系的基本途径。建立和求解模型的过程包括,从现实生活或具体情境中,抽象出数学问题,用数学符号,建立数学模型的数量关系和变化规律,然后求出结果,并讨论结果的意义。突出模型思想有利于更好理解、掌握所学内容。

  并且在“问题情境——建立模型——求解验证”的数学活动过程,有利于学生在过程中理解、掌握有关知识、技能,积累数学活动经验,感悟模型思想的本质。这一过程更有利于学生去发现、提出、分析、解决问题,培养创新意识。     

9.应用意识

    应用意识,是让学生初步“学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题”,一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。

    数学应用意识的培养具有长期性,在当前数学知识学习中,应注重数学知识的来龙去脉,这样更有利于提高发现和提出问题的能力、分析和解决问题的能力,以有意识的实践活动为载体,发展学生的综合应用能力。

  10创新意识

  是现代数学教育的基本任务,学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。

⑤ 《数学课程标准2011》中提出的10个核心概念有哪些

《数学课程标准2011》中提出的10个核心概念有哪些?
答:这10个核心概念是:
数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识.

初中数学内容的核心概念有哪些

在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。


数感

主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。

建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。

符号意识

主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。

建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。

空间观念

  • 主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;

  • 想象出物体的方位和相互之间的位置关系;

  • 描述图形的运动和变化;

  • 依据语言的描述画出图形等。

几何直观

主要是指利用图形描述和分析问题。

借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。

几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。

数据分析观念

包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;

了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;

通过数据分析体验随机性

一方面对于同样的事情每次收集到的数据可能不同,

另一方面只要有足够的数据就可能从中发现规律。数据分析是统计的核心。

运算能力

主要是指能够根据法则和运算律正确地进行运算的能力。

培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。

推理能力

推理能力的发展应贯穿于整个数学学习过程中。

推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。

推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;

演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。

在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。

模型思想

模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。

建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果并讨论结果的意义。

这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。

应用意识

有两个方面的含义,

一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;

另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。

在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。

创新意识

创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。

学生自己发现和提出问题是创新的基础;

独立思考、学会思考是创新的核心;

归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。

⑦ 数学新课程标准的核心概念有哪些

《数课程标准2011》提10核概念哪些
答:10核概念:
数、符号意识、空间观念、几何直观、数据析观念、运算能力、推理能力、模型思想、应用意识、创新意识.

⑧ 数学新课程标准的核心概念有哪些

数学新课程标准的核心概念有哪些?结合教学实践谈谈你的认识。
数学新课程标准的核心概念有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。它们有着密切的联系,这十个概念在数学新课程标准中有一个承上启下的作用,上连目标,下接内容,非常重要,所以也把它们称为核心概念。
通过学习数学新课程标准,在新课程标准的理念下,结合教学实际,我对这些核心概念有一些粗浅的理解。
1、数感:数感是关于对数量、数量关系、运算结果估计等方面的感悟,也是对数的抽象、数的应用的一种认识。有关数感的教学内容很多。比如:单位,在具体情境中,碰到一些数量就要选择一种对应单位对它进行刻画,这种感悟就是一种数感。在培养数感的问题上,我们教师有很多工作要做,要创建具体情境,举行各种活动,给孩子创造各种机会,激发他们对数的感悟,逐步积累经验,慢慢建立数感。数感不是短时间内就能让学生感受到的,数感的形成是一个长期的过程。
2、符号意识 :符号意识主要是指能理解并运用符号表示数、数量关系和变化规律,还能运用符号进行运算和推理,获得一般性的结论,促进学生数学的表达和思考。符号意识在数学学习中很重要,可以说它是一种简洁的数学语言,能对数学内容进行准确的表达和交流,是一种重要的载体。比如:在数学教学中对鸡兔同笼、方程等问题的研究中,符号意识的应用就能方便、快捷地刻画数学模型,迅速便捷地解题,渗透模型思想,奠定重要的数学基础。
3、空间观念和几何直观
空间观念是指根据实物特征抽象出几何图形,根据几何图形描述和想象实物的方位和相互位置关系,从而描述图形的运动和变化。根据语言描述画出图形,这是对空间观念的一种刻画。而几何直观是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题变得简明、形象、具体、简单,有助于解决问题,预测结果。几何直观可以帮助学生理解数学掌握规律。这两个概念之间是有密切联系的。我简单地理解为:空间观念是看着实物,抽象出图形,想象图形的运动和变化(我简单记成看物抽图想变化);几何直观是看图想事、看图分析、看图说理。联系的核心是“图”。
在数学教学过程中,无论是培养学生的空间观念还是几何直观,都要从“图”下手。例如,在教学几何知识和难理解的应用题时,我常做到以下几点来帮助孩子建立空间观念和几何直观。这几点是:一要充分发挥图形带来的好处。二要日孩子养成一个画图的好习惯。三要重视变换,让图形动起来,把握图形与图形之间的联系。四要在学生的头脑中留住些图形。
4、数据分析观念:数据分析观念是指了解现实生活中的许多问题都要先调查、搜集、分析数据,再做出判断,体会数据中蕴含的信息,选择合适的方法,逐步掌握现实生活中的各种规律。因此在教学统计知识时,让学生理解,数据分析是统计的核心,也是认识现实生活的一个窗口。所以新课程标准新增了统计、概率知识,体现现代社会基本素养的需要和学生未来数学发展的需要。
5、运算能力:运算能力是指能根据法则进行正确的四则运算的能力。培养运算能力有助于学生理解运算,寻求合理、简洁的运算途径解决问题,运算能力是学生学习数学的一个重要标志。
6、推理能力:推理能力是数学的基本基本思维方式,也是人们学习和生活中经常使用的思维方式。推理能力一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。学生推理能力的培养,不仅在几何里,数与代数、统计概
率都有贯穿在整个数学学习过程当中。
7、模型思想:模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。
8、应用意识和创新意识:应用意识就是强调数学和现实的联系,数学和其他学科的联系,运用所学到的数学去解决现实中和其他学科中的一些问题,当然也不包括运用数学知识去解决其他数学问题。
创新是一个永恒的主体,时时处处都应该提倡。创新意识的培养是现代数学教育的基本任务,在数学教与学的过程中,学生发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。从某种意义上说,孩子越小越有创新的兴趣,对问题的敏感性强,能提出很多成年人都难以解决的问题,其实这本身就是创新。

⑨ 数学新课程标准的核心概念有哪些

数学新课程标准的核心概念有: 一、数感。数感是一种感悟,是对数量、对数量关系结果估计的感悟;学习数学是要会去思考问题,一个本质的问题就是要建立数学思想,而数学思想一个核心就是抽象,而对数的抽象认识,又是最基本的。 二、符号意识。新课标把符号感修改为符号意识,符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。关于符号意识,注意到它在用词上,标准的修改稿和实验稿有一个区别,原来是叫符号感,现在把它称为叫符号意识。因为符号感更多的是感知,是一个最基本的层次。而符号意识对学生理解要求更高一些。在标准里边它是这样来表述的,符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。就是用符号来表示,表示什么,表示数,数量关系和变化规律,这是一层意思。还有一层意思,就是知道使用符号可以进行运算和推理,另外可以获得一个结论,获得结论具有一般性。所以标准上,大概用分号隔开是两层意思,一个是会表示,另外一个进行分开进行推理,得到一般性的结论。符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要形式。 三、空间观念。空间观念是培养学生初步的创新精神和实践能力需要的基本要素。空间观念表现为对现实世界里的物体的形状、大小、位置、变化及相互关系的理解与把握。空间观念主要表现在:能由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化。空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。 四、几何直观。几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。 五、数据分析观念。数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。《标准》将“统计观念”更名为“数据分析观念”,点明了统计的核心是数据分析。进一步,“数据分析观念”更加突出了统计与概率独特的思维方法:体会数据中蕴涵着信息;根据问题的背景选择合适的方法;通过数据分析体验随机性。体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法, 通过数据分析体验随机性。一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。 六、运算能力。《标准》指出:“运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题”。是学生学习数学的一个重要标志,学运算的目的是要解决一些问题,所以仅仅停留在运算的巧和快,可能误导了对运算的理解。运算能力是指能够根据法则和运算进行正确的运算的能力。培养运算能力有助于学生理解运算,寻求合理、简洁的运算途径解决问题。运算始终是中小学教学里边非常重要的组成部分,对数的认识,数的运算,一直都占很大的篇幅,另外也是学生学习数学的一个重要的标志。 七、推理能力。合情推理是根据已有的知识和经验,在某种情境和过程中推出可能性结论的推理。归纳推理、类比推理和统计推理是合情推理的主要形式。推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言、合乎逻辑地进行讨论与质疑。培养小学生的推理能力,应该做到以下两点:首先,把培养学生的推理能力贯穿在日常数学教学中。其次,把推理能力的培养落实到《标准》的四个内容领域之中。包括在学生学习数学和今后的未来的社会生产实践和生活当中,都是特别重要的。 八、模型思想。《标准》首先说明了模型思想的价值,即建立了数学与外部世界的联系。小学阶段有两个典型的模型“路程=速度×时间”、“总价=单价×数量”,有了这些模型,就可以建立方程等去阐述现实世界中的“故事”,就可以帮助我们去解决问题。数学有两件事情很重要,一件事情就是解决问题,所以要形成模型;另外一件事,要从实际情境中找到解决问题的模型。一个是归纳的过程,一个是演绎的过程。数学本身就是一种构造,没有数学公式在那里摆着,其实很多数学从一开始就要构造一个能够描述模型客观现实的模型,所以说模型思想从某种意义上说,反应了数学的本质。 九、应用意识。应用意识是综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题。应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时, 能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。应用意识说白了就是强调数学和现实的联系,数学和其他学科的联系,如何运用所学到的数学,去解决现实中和其他学科中的一些问题,当然也包括运用数学知识去解决另一个数学问题。培养学生的应用意识,应注意以下几点:⒈指导学生选好题目;⒉明确活动目标;⒊强调自主性与交流的要求;⒋总结与评价。 十、创新意识。创新意识可能更重要,数学是非常抽象和严谨的,但是同时数学的应用非常广泛,应该体现创新、创造性的应用。创新是一个永恒的主题,作为创新,在各个学科里边,都是要提倡,而数学的创新可能更重要,数学是非常抽象和严谨的,但是同时数学的应用非常广泛,应该体现创新、创造性的应用。所以说标准里面提出创新意识培养,是现代数学教育的基本任务,应体现在数学教与学的过程中,学生自己发现和提出问题是创新的基础,独立思考、学会思考是创新的核心等。

⑩ 初中数学中的十个核心概念

数学课程标准中设计了十个核心概念,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。

阅读全文

与数学课程的核心概念有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:739
乙酸乙酯化学式怎么算 浏览:1404
沈阳初中的数学是什么版本的 浏览:1350
华为手机家人共享如何查看地理位置 浏览:1042
一氧化碳还原氧化铝化学方程式怎么配平 浏览:884
数学c什么意思是什么意思是什么 浏览:1408
中考初中地理如何补 浏览:1299
360浏览器历史在哪里下载迅雷下载 浏览:701
数学奥数卡怎么办 浏览:1387
如何回答地理是什么 浏览:1023
win7如何删除电脑文件浏览历史 浏览:1055
大学物理实验干什么用的到 浏览:1484
二年级上册数学框框怎么填 浏览:1699
西安瑞禧生物科技有限公司怎么样 浏览:969
武大的分析化学怎么样 浏览:1247
ige电化学发光偏高怎么办 浏览:1337
学而思初中英语和语文怎么样 浏览:1650
下列哪个水飞蓟素化学结构 浏览:1423
化学理学哪些专业好 浏览:1486
数学中的棱的意思是什么 浏览:1057