导航:首页 > 数字科学 > 数学专业怎么学数学

数学专业怎么学数学

发布时间:2022-12-25 14:07:57

1. 大学数学怎么学学好大学数学的8个方法

进入大学,每个人都应该先做个自我反省,在学习过程中将会出现很多与过去不同的一面,尤其是在数学学习上,我整理了数学学习相关内容,希望能帮助到您。

学好大学数学的8个方法

1)大一生大都自我感觉良好,认为自己的学习方法是成功的。自己能考上不错的本科,就说明自己在学习上有一套。自己高中怎样学,大学还怎样学,就一定能成功。不知道改进学习方法的必要性。

2)缺少迎难而上的思想准备。基础知识大滑坡,基本技能大退步,头脑时常出现空白。学习时跟不上教学的进度与要求。

3)对大学课程的学习特点,缺少全面准确的了解。对大学生应该掌握的学习方法,缺少系统的学习和掌握。

提高大学数学学习成绩的关键:

大学生学数学,靠的是一个字:悟!

借助这8个方法,教你更好领悟高数

1

先看笔记后做作业

有的学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。

因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。

2

做题之后加强反思

现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。

要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,构建起一个内容与方法的科学的网络系统。

要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。

3

主动复习和总结

进行章节总结是非常重要的。

怎样做章节总结呢?

①要把课本,笔记,校期末测验试卷,都从头到尾阅读一遍。

②把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。

③在基础知识的疏理中,要罗列出所学的所有定义,定理,法则,公式。

④把重要的,典型的各种问题进行编队。

⑤总结那些尚未归类的问题,作为备注进行补充说明。

4

重视改错,错不重犯

一定要重视改错工作,做到错不再犯。

5

积累资料随时整理

把课堂笔记,练习,试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。

6

精挑慎选课外读物

大学数学考的是学生解决常规题的能力。作为一名大学生,如果还想围着自己的老师转,是不可能的,老师一般一下课就走,所以这种方法会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。当然,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事倍功半。

7

配合老师主动学习

大学生必须提高自己学习的主动性,随时预防挂科。

8

合理规划步步为营

大学的学习表面上是轻松的,实则是暗藏危机。没有了高中老师的步步紧抓,许多自制力差,又没计划性的学生任由自己堕落。所以,要想能迅速取得进步,就要给自己制定一个较长远的切实可行的学习目标和计划。此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的微量调整。

大学数学怎么学?

众所周知,数学是一门富有魅力又极具挑战性的学科。有些时候,花了大量的时间,但还是没有什么结论或是还是理解不了一些过程,而且,往往会有一种挫败感——为什么别人想的到而我想不到。可见,学好数学绝不是一件易事,需要付出大量的努力,需要大量的积累和细心体会。但是,大家也不必太过害怕或是灰心,要相信,只要付出了努力,只要有不断地、耐心地思考,一定能够理解好所学内容,能够解决问题。

对于刚入学的新生,要面对的专业课就是数学专业中基础中的基础:数学分析、高等代数和解析几何,正好对应数学的三大核心领域:分析、代数、几何。

数学分析是指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。在学习这门课程时,既需要感觉和直觉去分析理解问题,又需要严密的证明来说明你的观点。刚接触时,由于和高中的思维方式有很大不同,可能会有无从下手的感觉,但多看例题,反复练习,慢慢就会熟悉理解。

高等代数主要研究线性空间、线性变换和多项式理论等。通过引入向量、矩阵、行列式等工具,在一般的集合上研究问题,并将抽象的线性变换视为成更实际的矩阵进行研究。这是一套严密完整的理论,全部学完后,你将看到它完整的面目。在学习时,要注意将知识融会贯通,形成一个整体,一套体系。

解析几何在大一学的不多也不难,多用线性代数方法研究。

数分和高代是数学专业中的基础,需要高度重视,学到高年级的课程时,会发现有一些内容和数分高代的内容相近或是类似,如果一开始没好好学,后面会越学越辛苦。

学习数学必须要多思考,要多想想一个定理是怎么引入的,为什么需要这些条件,缺了某一个条件会有什么后果,多记一些例子,尤其是反例,再想想看如果不看证明,自己能不能证明出来。多研究例题,看看人家是怎么想的,思考为什么别人能想到,有什么地方可以找到突破口,要积累。多做题,多做好题,注意老师课堂上讲的题目和勾出来的题目。

在大学期间,也会有数学竞赛,主要的有:全国大学生数学建模竞赛(国赛)、美国大学生数学建模竞赛(美赛)、全国大学生数学竞赛(数学竞赛)、丘成桐大学生数学竞赛(丘赛)。对自己的数学实力有自信的,或是想要挑战一下自己的同学可以考虑参加这几个竞赛,检验一下自己。

要学好数学需要多读书,要扩大自己在数学领域的知识面,才会有更加深入的体会和了解。故在此推介一些适合数学专业的同学看的书,希望对大家有所帮助。

数学分析

1. 基础教材

(1)数学分析 陈纪修 复旦大学出版社

(2)数学分析 华东师范大学出版社(没有复旦的版本好,当作基础中的基础,全部掌握文本内容和习题即可)

(3)数学分析教程 常庚哲(较难)

2. 参考书

(1)微积分学教程 菲赫金哥尔茨(非常详细,可作数学分析“词典”用,若要顺序读下来可能比较耗时)

(2)数学分析 卓里奇(观点比较高级,建议高年级时或觉得自己学得很清晰的同学阅读)

(3)数学分析讲义 陈天权 (视角非常高,建议较高年级时阅读)

(4)数学分析原理(Principles of Mathematical Analysis) Rudin (比较全面的经典教材,写得比较简练,可以学完后看)

(5)陶哲轩实分析 陶哲轩 (从最基础写起,可以当作课外读物)

(6)重温微积分 齐民友 (可以学得差不多时作为回顾)

(7)数学分析新讲 张筑生

(8)数学分析全程辅导及习题精解

3. 习题

(1)数学分析习题课讲义(上下册) 谢惠民等 (很好的习题集)

(2)数学分析中的典型问题与方法 裴礼文 (很好的习题集,慢慢做不必着急)

(3)吉米多维奇数学分析习题集(1—6)(题目以计算为主,可以选取里面的计算题作为对自己计算能力的检验,不要刷题,挑取类型题做熟练就行)

高等代数

1. 参考书

(1)高等代数学习指导书(上下册) 丘维声 (非常厚的两本书,也非常详细清晰,可作参考)

(2)高等代数简明教程(上下册) 蓝以中 (比较薄,易携带)

(3)高等代数学 张贤科、许甫华 (相比以上较难,但非常全面,有一些知识在高等代数课上并未涉及,可以到这里阅读)

(4)高等代数解题方法 张贤科、许甫华(上本书的配套习题书)

2. 习题集

(1)高等代数习题集(上下册) 杨子胥(比较全面的一本高等代数习题集,可以作参考)

(2)高等代数习题精解 刘丁酉 中国科学技术大学出版社 (较全面)

(3)我院樊启斌老师整理的高等代数习题集非常好,除了该本练习和课后习题,一般不需要再多做题目。

概率论

(1)概率论 何书元 北京大学出版社(轻便而易懂)

(2)概率论教程 钟开莱(均以实变函数知识为基础的概率论,是真正意义上的数学中的概率论,大三的数基与弘毅同学可看)

(3)概率论教程 缪柏其、 胡太忠 中国科学技术大学出版社

数值分析

(1)数值线性代数 北京大学出版社

(2)数值计算方法 武汉大学出版社

常微分方程

(1)常微分方程教程 丁同仁(国内经典教材)

(2)常微分方程习题集 庄万(习题比较多可以参考一下)

(3)高等数学例题与习题集(四)常微分方程 博亚尔丘克(还不错的一本ODE习题集)

(4)常微分方程 阿诺尔德(观点较高的一个经典着作)

复变函数

(1)复变函数简明教程 谭小江,伍胜健(北大教材,条理清晰,可作初次学习用)

(2) Complex Analysis, Stein (非常简练而全面,可作参考书)

(3)实分析与复分析(Real and Complex Analysis), Rudin (经典的西方教材)

(4)复分析(Complex Analysis), Ahlfors(最经典的西方教材之一)

(5)高等数学例题与习题集(三) 复变函数 博亚尔丘克(非常全面的一本复变函数习题集)

实变函数

(1)Real Analysis, Folland(深入浅出,很详细)

(2)Real Analysis, Stein(比较经典的教材)

(3)实分析与复分析(Real and Complex Analysis), Rudin(经典教材,比较概括而全面)

(4)实变函数论,实变函数学习指南 周民强(非常好的国内教材,里面思考题非常多,可以慢慢阅读思考)

泛函分析

(1)泛函分析,江泽坚(非常简明)

(2)泛函分析讲义(上下册) 张恭庆、林源渠、郭懋正(北大教材,比较全面,习题也不错)

(3)Functional Analysis, Rudin(经典教材)

(4)泛函分析(Functional Analysis), Peter Lax(经典教材)

2. 数学专业的大学课程该怎么学呢哪些课更重要

1、数学专业大学课程数学分三条主线:
(1)分析学(有可能开课顺序略有不同):数分——实变——泛函——复变——常微分——偏微分——概率论与数理统计
(2)代数学:高代——抽代——数论——离散——图论
(3)几何学:解几——拓扑——微分几何
另外,还会有一些C、C++、数据结构、计算机图形学、运筹学、物理学等课程。
2、数学分析、高等代数、抽象代数、常微分方程、复变函数、实变函数、概率论、微分几何、数值代数
数值分析等等,应该都是比较基础的课程,是比较重要的课程。
3、延伸:要学的专业课,大一:数学分析,高等代数,解析几何,
大二:数学分析,常微分方程,数学模型,高等几何,大三:复变函数,初等数论,初数研究,微分几何,离散数学,实变函数,抽象代数,概率论,数理统计,数学实验,泛函分析,点集拓扑等课程。

3. 数学专业学什么

数学专业主干课程有:

数学分析、高等代数、高等数学、解析几何、微分几何、高等几何、常微分方程、偏微分方程、概率论与数理统计、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学。

师范类还要学习数学教育学等。

(4)具有良好的教师职业素养和从事数学教学的基本能力,熟悉教育法规,掌握并初步运用教育学、心理学基本理论以及数学教学理论,有较强的语言表达能力和班级管理能力。

(5)掌握强身健体的科学方法,养成良好的体育锻炼和卫生习惯,达到国家规定的关于大学生身体素质、心理素质和审美能力的要求。

4. 数学应该怎样学

问题一:怎样学好数学,方法有哪些? 数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
如何学好数学2
高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。
有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难......>>

问题二:想学好数学应该怎么做?注意什么? 学习要安排一个简单可行的计划, 改善学习方法.同时也要适当参加学校的活动,全面发展.
在学习过程中,一定要:多听(听课),多记(记重要的题型结构,记概念,记公式),多看(看书),多做(做作业),多问(不懂就问),多动手(做实验),多复习,多总结.用记课堂笔记的方法集中上课注意力.
其他时间中,一定要保证学习时间,保证各科的学习质量,不能偏科.
每天要保证足够的睡眠(8小时),保证学习效率.
安排适当的自由时间用于与家人和朋友的交往及其他活动.
通过不懈的努力,使成绩一步一步的提高和稳固.对考试尽力, 考试时一定要心细,最后冲刺时,一定要平常心.考试结束后要认真总结,以便于以后更好的学习.
眼下:放下包袱,平时:努力学习.考前:认真备战,考试时:不言放弃,考后:平常心.切记!
成功永远来自于不懈的努力,成功永远属于勤奋的人.祝你成功.

问题三:怎么学好初中数学 如何学好数学
数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
如何学好数学
学好数学的方法其实跟读其他科目没太大差别,流程上可区分为六个步骤:
1. 预习
2. 专心听讲
3. 课后练习
4. 测验
5. 侦错、补强
6. 回想
以下就每一个步骤提出应注意事项,提供同学们参考。
1. 预 习 : 在课前把老师即将教授的单元内容浏览一次,并留意不了解的部份。
2. 专心听讲:
(1)新的课程开始有很多新的名词定义或新的观念想法,老师的说明讲解绝对比同学们自己看书更清楚,务必用心听,切勿自作聪明而自误。
若老师讲到你早先预习时不了解的那部份,你就要特别注意。
有些同学听老师讲解的内容较简单,便以为他全会了,然后分心去做别的事,殊不知漏听了最精彩最重要的几句话,那几句话或许便是日后测验时答错的关键所在。
(2)上课时一面听讲就要一面把重点背下来。定义、定理、公式等重点,上课时就要用心记忆,如此,当老师举例时才听得懂老师要阐述的要义。 ......>>

问题四:如何快速学习数学 背好概念,做好计划,主要是记住方法,数学就很简单的了,如果一道题想了10分钟都想不出来,就要敢于说放弃,否则会对数学厌倦。老一句,主要是方法~!!!!! 希望你能高考成功!谢谢

问题五:怎么学好数学 亲,你好…
我和你一样,我的数学成绩也不好,当时我为了高考不让数学拉后腿,我是不断的摸索,不断的找适合自己的学习数学的方法,我也经常找数学老师帮忙,老师给了我好多学习方面的意见和指导,这对我学好数学提供了很大的信心和动力…
下面我就浅谈一下我这个在数学方面的笨学生是怎样提高数学成绩的:首先,你一定要有学好数学信心,这太重要了,绝对不能因为几次考试考的太差而丧失信心,我当时鼓励我自己的口头禅就是(平时的考试成绩都是浮云,高考考好才是王道),可能有很多人会说,平时都考不好,关键时候怎么会考好?其实是这样的,我们平时的测试在我自己看来仅仅是检测,考得不好没关系,但你绝不能放弃,其实你仔细想想,考得不好也有好处啊,一方面能给你拉响警钟,督促你要想办法提高成绩,另一方面也能够戒骄戒燥,更能坚定你学好这门功课的决心,学习的劲更足,学习的过程更充实有趣,不是吗?以上我说的前提条件是,你在学数学时必须不能怕失败,不能放弃,要有信心学好它。至于接下来怎么学习数学,我和你分享一下我自己的方法,你可以参考一下,首先要提前预习要学的内容,预习的时候不用太细致,预习时尽量能懂书上的例题,不会的做记号,然后做课后的简单一点的练习题,不会做的pass,课前准备一个专门的数学笔记本,上课时注意听讲,重要的知识做笔记,尤其是在做记号的地方更要注意听老师讲,如果还没有听懂,下课抓紧时间问老师同学,一定搞懂,绝不留盲点,然后趁热打铁,把课后没有做完的习题抓紧做完,亲,可不要小看课后的练习题哦,不要以为简单就不做,那是非常经典的题,必须要做完,然后在选择性的做练习册和你买的资料书上的题,不一定全做…在做的过程中,把比较经典的题摘抄在笔记本上,或者是用剪刀剪下来贴在笔记本上,隔三差五的翻看笔记本,不要小看那个笔记本哦,那里面可是记载着经典的题型和重要知识点…
每次考完试,一定要总结,把做错的题一定在重做一边,一定不要懒,建议准备一个错题收集本,把做错的郸较有代表性的题用剪刀剪下来贴在错题本上,然后把正确的解题步骤再做一边,注意,可不是抄一遍…
再有就是在考场上怎么做题,策略很简单,就8个字(遇阻先闪,出招必赢),就是从前向后做,会做的题,一定要有不让它错的信心,不会做的,暂时pass,绝对不能在一道题上耽误太多时间,那样会严重影响心情,对做后面的题影响也很大,切记!!!当把试卷做完一遍后,再回后头做第二遍(策略还是那8个字),第二遍是只做之前空着没做的题,那个时候你会感觉很踏实,因为你会的题已经做完了,即使不会做的题,那个时候心里比较踏实,你认真分析题,可能会由于兴奋灵感一来就给做了出来,嘿嘿…最后真正不会做的题,坚决不要空着,能写多少就写多少,能得一分是一分,平时养成习惯,因为高考的时候一分可会让你在全省下降几百个甚至上千名次哦…
我用这个方法使我的数学成绩提高了很多很多,希望对你也有所启迪…
祝你的数学成绩步步高升…

问题六:如何挑选西瓜? 顾客购买西瓜时,怎样才能挑选到称心如意的西瓜呢?在此我们特地介绍如下几种挑选西瓜的方法,供大家参考。
1、观色听声。瓜皮表面光滑、花纹清晰、纹路明显、底面发黄的,是熟瓜;表面有茸毛、光泽暗淡、花斑和纹路不清的,是不熟的瓜;用手指弹瓜听到“嘭嘭”声的,是熟瓜;听到“当当”声的,还没有熟,听到“噗噗”声的,是过熟的瓜。
2、看瓜柄。绿色的,是熟瓜;黑褐色、茸毛脱落、弯曲发脆、蜷须尖端变黄枯萎的,是不熟就摘的瓜;瓜柄已枯干,是“死藤瓜”,质量差。
3、看头尾。两端匀称,脐部和瓜蒂凹陷较深、四周饱满的是好瓜;头大尾小或头尖尾粗的,是质量较差的瓜。
4、比弹性。瓜皮较薄,用手指压易碎的,是熟瓜;是指甲划要裂,瓜发软的,是过熟的瓜。
5、用手掂。有空飘感的,是熟瓜;有下沉感的,是生瓜。
6、试比重。投入水中向上浮的,是熟瓜;下沉的是生瓜。
7、看大小。同一品种中,大比小好。
8、观形状。瓜体整齐匀称的,生长正常,质量好;瓜体畸形的,生长不正常,质量差。

问题七:数学应怎样学习 1、兴趣爱好。很多同学表示,之所以学不好数学是因为没兴趣,只有12.0%的人表示自己很喜欢数学。至于学数学的目的,58.2%的同学选的是迫与高考而学,而20.9%的人则表示未想过此问题。看到同学们对数学的兴趣如此缺乏,我们感到很担心。兴趣是最好的老师,是不竭的动力,若一个人厌恶数学,那数学就成为了他的“敌人”。而要让一个对数学不感兴趣的人学好数学,只能是痴人说梦。
2、思想上的定位。在很多女生的意识里,都认为女生在理科学习方面肯定比不过男生,这是天生的差别,故女生数学学得不好也是正常的。31.0%的同学将自己定位在“数学差生”的行列里,12.1%的人将学不好数学的原因归究于智力上的差异。
3、自主探究能力。通过调查,我们发现有很多女生在数学学习方面存在一个通病:缺乏自主探究的能力。数学是一门探究性很强的科目,它的每一个定理、公式都来源于严密的逻辑推理及实践,再通过计算而得出。许多题目若不深入思考,若不动笔计算,你是永远也解不出来的。它不像语文、政治、历史,知识要点可以死记硬背,它只能理解;它的知识也不会像文科的知识要点一样,随时间渐渐淡忘。只要你对这道数学题深入思考了、探究了、并理解了,那么这道数学题乃至这一类型的题你都将会做,而且可能一辈子都会记得。而女生们正是在自主探究方面缺乏热情与主动性。遇到难题,不愿深入探究,懒得去想、懒得去算,而直接向老师、同学请求援手,享用别人的劳动果实。在调查中,坚持自己思考、自己解答难题的同学仅有15.9%。
以上就是高中女生数学学习存在的三只“拦路虎”,它们都是来自本人的主观意识,要除掉它们,也只能靠自己。通过搜寻资料,我们找到一些改善困境的小方法,至于管不管用、有多大用处,那就要靠个人的意志力了。
第一,端正心态,正确看待数学。数学是门很有用的学科,在生活、生产、科学和技术中都要应用到。它是科学的语言,是一切科学和技术的基础,是我们思考和解决问题的工具。学数学还能提高能力,一般来说数学学得好的人也容易学好其他理论。实际上,理论之间往往有彼此相通和共同的东西,而“数量关系与空间形式”、逻辑结构及探索思维等正是它们的支架或脉络,因而数学恰在它们的核心处。这样,在数学中得到的训练和修养会很好地帮助我们学习其他理论,数学素质的提高对于个人能力的发展至关重要。这些,才是我们学习数学的真正目的,为生存,为生活,不仅仅为过高考那一关。对于数学的兴趣是得在学的过程中慢慢培养的。在学的过程中难免会出现绊脚石,也避免不了会陷入迷茫中。这时,切勿心浮气躁,也不要轻言放弃,数学是很怪的,你越是心急就越是吃不着热豆腐。反之,你若镇静一点,慢慢思考,仔细推敲,很快就能琢磨出个所以然来,数学是有趣的,若你还是对它提不起兴趣来,那就去看看关于数学的趣味书吧,像《数学游戏》。兴许,在不知不觉你就会爱上数学。
第二,解放思想,树立自信。学不好数学的女生们大都存在这样的思想:女生的脑子在理科方面是比不过男生的。着是没有科学依据的谬论。每个人的智力条件虽然有所差异,但大多数人的智力条件相差不大,男女都一样。因此,作为一个生理正常的人,大可不必为自己的智力条件担忧,要相信自己的智力条件是不错的。记住,智力条件是学习不可缺乏的基础之一,但不是学习的唯一,不要动不动就把数学学不好的原因归究到智力条件上。由于受到这种思想定位的影响女生往往缺乏自信,认为自己不行。思想上的定位还会使女生失去自信,在数学高手面前抬不起头来。自信,不是成功后才拥有,而是拥有后才成功,女生们不知,得先有自信才能学好数学啊!女生要相信......>>

问题八:语文和数学怎么样才可以学好 关于语文:
基础部分:
没有什么别的办法,只有看书,之后背下来。(其实很简单)这部分是最简单的部分,考试中千万不能丢分。
阅读部分:
听讲,记笔记,多做练习。(做一些归纳文章主要内容和中心的练习)这部分较难,扣个0.5/1分没什么大关系,当然如果你有能力,就尽可能别丢分。
作文部分:
五年级注重写人写景,六年级注重写离别感恩回忆的文。(一定要加强练习)错别字要彻底消灭。买本作文宝典之类的书。
关于数学:
学习:
课内重视听讲,课后及时复习。
新知识都是在课堂上听来的,但听得同时也要手记笔记,最好在老师讲的时候认真听,上课时的间隙或下课时再补充笔记。
适当多做题,养成良好的解题习惯。
一开始先做一些课内书上的,熟悉解题思路。知道你把书上的题做得滚瓜烂熟后,再做一些课外的题,就是难一点的题。这时候如果错的很多的话,就把错的抄下来,反复做,知道会了为止。数学需要灵活贯通,不要死板。
考试:
在考前要保持良好的心态,认真复习,不要紧张,紧张的话可以深呼吸。考试时,先做会的题,不会的题先别理它,最后如果有时间再做。最后最后检查,这非常以及特别重要,要逐题检查,最好把答案捂上,再快速算一遍。之后检查姓名班级。
怎样才能学好数学
怎样才能学好数学?
要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。
事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。
究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。
由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进......>>

5. 数学专业的大学课程该怎么学呢哪些课更重要

作为苦逼数学系学生,只能告诉你本科期间数学分三条主线: 分析学(有可能开课顺序略有不同):数分——实变——泛函——复变——常微分——偏微分——概率论与数理统计 代数学:高代——抽代——数论——离散——图论 几何学:解几——拓扑——微分几何 当然,还会有一些C、C++、数据结构、计算机图形学、运筹学、物理学等课程 分析学的基础是数分,据说大牛都在做吉米多维奇的习题集,反正我是没碰过。数分绝对要学懂【只要能理解就好了,不一定要考高分,如果想得奖学金的除外】,后面一大串课程都要用到它推荐你看看吴军的《数学之美》,第一次有地方没懂也没关系,先过一遍,后面上课后你会不自觉的再返回来看的

6. 数学与应用数学专业的学生,该怎么学习啊,感觉数学好难的

高中数学怎么学?高中数学难学吗?

数学这个科目,不管是对于文科学生还是对于理科学生.都是比较重要的,因为他是三大主课之一,它占的分值比较大.要是数学学不好,你可能会影响到物理化学的学习,因为那些学科都是要通过计算.然而,这些计算也都是在数学里面.高中数学怎么学?有哪些好的方法?

老师让孩子上黑板做题

数学担负着培养孩子的运算能力,还有孩子应用知识的能力.高中数学怎样学?还是要看学生对数学的理解程度.学生要有自己的学习方法,你不光要掌握老师上课的内容,在下课之后还要及时巩固,加深.

7. 大学数学专业应该怎么学才好

数学专业的课程,其特点是需要理解而又不需要做实验的基础课程。很多大学生都觉得难学,为此,以下是我分享给大家的大学数学专业的学习方法的资料,希望可以帮到你!

大学数学专业的学习方法

首先,要认真听课。上课集中精神,跟教师的思路走。那怕后来发现教师的思路出错了,也有收获。不要主观认为教师应该如何讲课,不要用中学教师的标准判断大学教师。当然,大学教师良莠不齐,有些教师的课确实不值得听。但学生不宜过早的下这种判断。只要要认真听课10学时以上,再判断是否值得听。一般而论,低年级的课程,值得听的比较多。

其次,认真阅读教材,还有教师讲课用的ppt。在中学,课后不认真阅读教材也不是种好的学习习惯,虽然用题海战术或许能使这种习惯不影响考试成绩。在大学,不阅读教材很难考出好成绩。特别要注意教材和课件中的例题,无论教师是否在课堂上讲解过。课前预习下教材也是种很好的学习习惯,对考出好成绩有帮助,但未必是必须的。

最后,可能也是最重要,认真做习题。一般来说,教师留作业的题目全部弄懂,包括问过老师或同学后确实懂了,考试就可以80分以上。有题目做不出需要讨论或请教是正常的,但绝对不能抄作业。如果要考90分以上,还应该选作些书上比所留作业更难的题目。

总的讲,大学里的考试都比高中阶段的容易,或许刚开始还没有适应时的小考是例外。与高中更看重成绩相对排名不同,大学的排名在评奖学金等方面也重要,但更重要的是绝对成绩。成绩的学时加权平均成为所谓积点,在以后出国申请奖学金等方面都很重要。

大学数学专业的学习建议

首先,听中国教师上课。教师的讲解总是重要的,特别是对于低年级的入门性课程。上大学交学费,却不用教师的资源,显然不是明智的选择。与中学听课更侧重解题方法不同,大学的数学课程更应该听教师的分析思路和概念解释。为有更好的听课效果,课前应简单预习,了解要讲的大致内容;课后要复习。特别注意理论的完整性。多数数学课程在具有不同尺度上的理论体系。全部数学课程是个体系,每门课程又是个子体系,课程中每章又自成体系,而教师组成材料时往往让每次课也有一定的完整性。

其次,做俄国习题集的题目。想要学好数学,必须多做练习。完成教师布置作业后仍有余力,应该把教材上比作业难的题目也都做了。在此基础上,我建议从俄国的习题集中找题目做。这出于两方面的考虑。其一,俄国的数学教学体系与中国的很接近,更准确地讲现在中国的教学体现主要是因袭俄国的,因此比较便于与课堂教学同步练习。其二,俄国很多教材没有习题或仅有很少的练习,因此必须配套专门的习题集;往往是一本习题集要配不同的教材,所以习题集的内容很丰富。当然,俄国习题集的缺点是题目太大有些是比较机械的重复性练习。最好有内行指点使用。

第三,阅读英文教材。真正的数学概念是超越语言的,因此用不同的语言思考数学问题,有助于理解的深入。一般而言,阅读英文比中文吃力,因此教材更要精选。不仅要阅读教材,而且要完成练习,这样可以检验理解程度。或许与课堂教学同步阅读英文教材不太现实,不仅是时间有限,而且教学体系差别比较大。可以学完门课程后再读英文教材。英文教材需要精选,下次再专门详细谈。

最后,课程之间打通。前面说过,全部数学课程构成个理论体系。要学好的不仅是每门课程,而且是要把各门课程融会贯通。各门课程的分别仅是为教学方便的侧重不同,彼此之间还是有联系的。例如,数学分析课程中多元曲线和曲面积分用得都是Riemann积分,而在实函数论中将学习Lebesgue积分以及其它抽象积分,这时就应该思考曲线和曲面Lebesgue积分的性质与用途。再例如,高度代数中讲线性空间都是有限维,泛函分析中引入无限维空间,两者的异同也很值得推敲。

学好大学数学专业应完成的题目

第1种,两卷本Introction to Calculus and Analysis (Vols. 1,2) by Richard Courant and Fritz John。该书1974年由John Wiley and Sons作为Interscience系列初版,1989年由Springer-Verlag作为Classics in Mathmatics重印。2000年的重印本被世图公司2008年在大陆发行。该书由汉译本,收入“数学名着译丛”。该书的内容与国内数学分析基本接近,但还包含线性代数、微分方程、变分法和复变函数的导论性内容。作者Courant是应用数学的大师,Fritz John也是偏微分方程方面的顶级专家。该书可以在学过数学分析后阅读。

第2种,Finite-Dimensional Vector Spaces by Paul R. Halmos。该书1942年作为Annals of Mathematics Studies丛书的第7种由Princeton University Press出版。修改后的第2版1958年由Van Nostrand出版,1974年由Springer-Verlag出版作为Undergraate Texts in Mathematics丛书中的一种,国内出版了盗印本。2008年世图公司出版在大陆发行了Springer-Verlag的1987年重印本。作者Paul R. Halmos或许不是一流的数学家,但毫无疑问是一流的数学教育家和教科书作者。该书强调有限维空间与无限维空间的联系。因此,不仅是线性代数的复习,也是泛函分析的初步导引。该书可以在学过线性代数后阅读。

第3种,Differential Equations, Dynamical Systems, and Linear Algebra by Morris H. Hirsch and Stephen Smale。该书1974年由Academic Press出版,有高教版的汉译本。2004年由Elsevier出了新版Differential Equaitons, Dynamical Systems, and An introction to Chaos by Morris H. Hirsch, Stephen Smale and Robert L. Devaney,新版本于2007年由世图公司在大陆发行,后来又有人民邮电出版社的汉译本。虽然新版中有些更时髦的内容,但线性代数的内容有所消弱。我个人更偏爱旧版。Smale是当代大师级的数学家,Hirsch也在顶级数学家之列。该书内容基本涵盖国内高度代数和常微分方程两门课程,但在某些方面论述的更为深刻。该书可以在学过常微分方程后阅读。

第4种,Complex Analysis by Lars V. Ahlfors。1979年McGraw-Hill出版该书第3版,有上海科技出版社的汉译本,2004年机械工业出版社在大陆发行影印本。作者Ahlfors是大师级的数学家,曾获Fields奖(1938)和Wolf奖(1981)。该书选材精练、论证严谨,有些内容的处理别具一格。有些习题,但不算很多。该书可以在学过复变函数后阅读。

第5种,A Survey of Modern Algebra by Garrett Birkhoff and Saunders Mac Lane。该书于1941年由Macmillan出了第1版,多次修订再版,到1976年出了第4版。第4版大陆有当年光华出版社的盗印版,并有高教的汉译本。1998年由A K Peters出了第5版,2007年人民邮电出版社在大陆发行了第5版。该书内容丰富,几乎涵盖本科水平的全部代数内容,而且从统一的观点组织材料。该书可以在学过抽象代数后阅读。

第6种,Principles of Mathematical Analysis by Walter Rudin。该书1976年McGrawhill出了第3版,并有高教出的汉译本。2007年机械工业出版社在大陆发行了重印本。该书内容比国内的数学分析课程多,还包括属于拓扑学的度量空间的拓扑和属于实变函数的Lebesgue积分,特别是有流形上积分的简明导论。Rudin写过多种分析教材,但都不是本科生程度的。该书论述简明扼要,习题量比较大,而且有些题目很难。该书应该在学过实变函数后阅读,但不用等学完拓朴学。

猜你喜欢:

1. 大学数学学习方法介绍

2. 学习大学数学的心得

3. 大学为什么要学数学

4. 数学教育理论学习心得

5. 大学数学为什么这么难

8. 大学数学专业应该怎么学呢

高等数学里里有“三高三低”的说法,三低指的是数学分析(微积分理论部分)、高等代数和空间解析几何,它们是三高的基础。三高指乏函分析、近世代数和拓扑学。如果三低学不好后面的三高就很难学好。

以高等代数为例:
高等代数在大学低年级主要是学习线性代数和代数空间的概念。线性代数在工科有叫做工程数学的,应用非常广泛,这个就不多说了。在数学专业上对后续的课程也非常重要,比如可能在后面要开的一门专业课叫数值分析和数值代数的课程,用处非常广,还有就是以后要开设的几何作图(或图形学)和图像处理,空间的各种变换都是需要用到线性代数的。再说代数空间,这是现代数学的核心思想的体现,你不仅要好好学会课本的知识,还要掌握代数在处理这些空间上的方式方法,形成数学思维,这对后续课程的学习非常重要。在后续的泛函分析、近世代数和拓扑学上都是要用到的。
学习代数不仅要掌握方法技巧,更重要的是要掌握思想,这是大学和高中数学的区别。从一定意义上说代数是最能锻炼人的思维的,对于数学专业的它以推理证明为主,所以在学习中一定要掌握好概念定义,清楚定理、推论的条件。这样学习起来就轻松了,有时候一道题想上几年都想不通,但是只要对概念稍加研究可能就很轻松地解决了。这就是代数的奇妙之处。

三低中的其他两个我就不多讲了,如有必要你可以给我留言。
最后我我想加两点:
一是他们的用处我没法一一列举,只能点到为止,凸现它的重要地位。二是不管现代数学多么高深,多么前沿的问题,最终都是要化为基本的代数和微积分来处理的,这是丘成桐说的。

9. 大学学数学专业的人,是怎么学习的

最主要是数学分析和高等代数,上课要认真听,书本上的定理要会证,后面习题也要做。之后学近世代数,常微分方程,复变函数等专业课,这些都得踏实学,上学期我们学了实变函数,泛函分析,还有点集拓扑,特别抽象,一学期下来也不知道学了啥。。。

10. 数学系的怎样学好大学数学

首先是学好《数学分析》与《高等代数》,这是两门非常重要的基础科目,也是考研初试必考科目。以下分别说明两门课的核心:
《数学分析》:核心内容是极限。微积分,级数都是以极限为基础。
《高等代数》:核心内容是矩阵。向量空间,欧式空间都是研究在某组基下的矩阵,以及矩阵间的关系。
其次,学好这两门科目,必须先立足课本。课本的每一个字都要理解透彻,包括略去的证明也要亲自证一下。不同于高中数学,大学数学的课本内容至关重要。在书中内容理解的基础上,完成课后习题。如有不会可参见相关资料。数分有配套习题解答即可。高代推荐西北工大出版的三导(导教-导学-导考),学好这本书中例题再做课后练习。
最后,温故知新。这是所有学习的共同点。

阅读全文

与数学专业怎么学数学相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:739
乙酸乙酯化学式怎么算 浏览:1404
沈阳初中的数学是什么版本的 浏览:1350
华为手机家人共享如何查看地理位置 浏览:1042
一氧化碳还原氧化铝化学方程式怎么配平 浏览:884
数学c什么意思是什么意思是什么 浏览:1408
中考初中地理如何补 浏览:1299
360浏览器历史在哪里下载迅雷下载 浏览:701
数学奥数卡怎么办 浏览:1387
如何回答地理是什么 浏览:1023
win7如何删除电脑文件浏览历史 浏览:1055
大学物理实验干什么用的到 浏览:1484
二年级上册数学框框怎么填 浏览:1699
西安瑞禧生物科技有限公司怎么样 浏览:969
武大的分析化学怎么样 浏览:1247
ige电化学发光偏高怎么办 浏览:1337
学而思初中英语和语文怎么样 浏览:1650
下列哪个水飞蓟素化学结构 浏览:1423
化学理学哪些专业好 浏览:1486
数学中的棱的意思是什么 浏览:1057