⑴ 运算律有哪些
包括加法交换律和结合律、乘法交换律和结合律、以及乘法对于加法的分配律等等。运算律是通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律。既是重要的数学规律,也是数学运算固有的性质。
教学价值:
在小学数学里教学运算律,不仅具有显性的知识与技能价值,而且具有隐性的过程与方法价值。从显性的方面看,运算律是数与代数部分的重要知识,应用运算律进行简便计算有助于学生不断提高运算能力。
从隐性的方面看,通过运算律的教学,有助于学生丰富和加深对运算本身的理解,感受抽象、推理、模型等基本数学思想,同时也能获得一些对心智成长十分有益的感悟。
以上内容参考:网络——运算律
⑵ 四则运算的运算定律有那些
在数学中,当一级运算(加减)和二级运算(乘除)同时出现在一个式子中时,它们的运算顺序是先乘除,后加减,如果有括号就先算括号内后算括号外,同一级运算顺序是从左到右,这样的运算叫四则运算。
四则是指加法、减法、乘法、除法的计算法则。
一道四则运算的算式并不需要一定有四种运算符号,一般指由两个或两个以上运算符号及括号,把多数合并成一个数的运算。
加减互为逆运算;乘除互为逆运算;乘法是加法的简便运算。
⑶ 小学数学所有运算律
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:a(b+c)=ab+ac
运算定律共有五个:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律,要求在理解的基础上掌握,并能灵活运用。
运算性质指:一个数加上两个数的差;一个数减去两个数的和;一个数减去两个数的差;一个数乘以两个数的商;一个数除以两个数的积;一个数除以两个数的商;几个数的和除以一个数等。这部分内容只是用于简便运算。
运算法则包括:整数四则运算法则、小数四则运算法则、分数四则运算法则,要求在理解的基础上掌握法则,并能运用法则熟练地进行计算。
⑷ 五年级下册数学全部的运算定律和性质有哪些
①加法交换律:两个数相加,交换加数的位置,和不变。 a+b=b+a
②加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 (a+b)+c=a+(b+c)
③减法的性质:A:连续减去两个数,等于减去这两个数的和。a-b-c=a-(b+c)
B:减去两个数的差。等于减去差里的被减数再加上差里的减数,a-(b-c)=a-b+c
④乘法交换律:两个数相乘,交换因数的位置,积不变。a*b=b*a
⑤乘法结合律:三个数相乘,可以先乘前两个数,或者先乘后两个数,积不变。 (a*b)*c=a*(b*c)
⑥乘法分配律:两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再把积相加。a*(b+c)=a*b+a*c
⑦除法的性质:
A商不变性质:被除数和除数同时扩大或缩小相同的倍数,(0除外),商不变。
B连续除以两个数,等于除以这两个数的积。a÷b÷c=a÷(b×c)
0 27 78
岳阳 五年级数学下册 ,海风教育10000+好老师,免费..
海风五年级数学下册 ,当地中学
⑸ 运算律有哪些
运算律包括交换律、结合律、分配律
加法交换律:a+b=b+a;
乘法交换律:a×b=b×a;
加法结合律:a+b+c=(a+b)+c=a+(b+c);
乘法结合律:(a×b)×c=a×(b×c);
乘法分配律:a×(b+c)=a×b+a×c;
左分配律:cx(a+b) = (cxa)+(cxb);
右分配律:(a+b)xc = (axc)+(bxc)。
(5)数学的运算定律有哪些扩展阅读:
运算律既是重要的数学规律,也是数学运算所固有的性质。
1、根据运算的定义可以推导出运算律。
运算律是通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律。这个过程属于由具体到抽象、由特殊到一般的归纳,体现了合情推理的基本特点。
但从知识逻辑来说,运算律与相关运算的定义是相伴相生的。数学家在定义四则运算的同时即需考虑“能否由定义出发合乎逻辑地推导出相应的运算律”。
2、运算定义和运算律是探索相关计算方法的依据。
完成运算、得出结果的方法、程序或途径,通常叫做运算方法或计算方法。把运算方法所要求的操作程序和要点用相对准确、规范且比较容易理解的文本语言表述出来,或者将当前运算归结为学生早先已经掌握的相关运算,就是所谓的“运算法则”。
⑹ 运算律有哪些
运算律有:加法交换律、乘法交换律、加法结合律、乘法结合律、乘法分配律、左分配律、右分配律。运算律是通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律。
运算律既是重要的数学规律,也是数学运算固有的性质。包括加法交换律和结合律、乘法交换律和结合律、以及乘法对于加法的分配律等等。运算定义和运算律是探索相关计算方法的依据。完成运算、得出结果的方法、程序或途径,通常叫做运算方法或计算方法。
交换律
交换律是被普遍使用的一个数学名词,指能改变某物的顺序而不改变其最终结果。交换律是大多数数学分支中的基本性质,而且许多的数学证明都需要依靠交换律。即给定集合S上的二元计算,如果对S中的任意a,b满足a+b = b+a,则称满足交换律。
例如,在四则运算中,加法和乘法都满足交换律。加法交换律是指两个数相加,交换加数的位置,它们的和不变。即a+b=b+a。乘法交换律是指两个数相乘,交换因数的位置,它们的积不变。即axb=bxa。另外,在集合运算中,集合的交、并、对称差等运算都满足交换律。
⑺ 运算律有都哪些啊
运算律包括交换律、结合律、分配律
加法交换律:a+b=b+a;
乘法交换律:a×b=b×a;
加法结合律:a+b+c=(a+b)+c=a+(b+c);
乘法结合律:(a×b)×c=a×(b×c);
乘法分配律:a×(b+c)=a×b+a×c;
左分配律:cx(a+b) = (cxa)+(cxb);
右分配律:(a+b)xc = (axc)+(bxc)。
拓展资料
1.根据运算的定义可以推导出运算律。
运算律是通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律。这个过程属于由具体到抽象、由特殊到一般的归纳,体现了合情推理的基本特点。但从知识逻辑来说,运算律与相关运算的定义是相伴相生的。数学家在定义四则运算的同时即需考虑“能否由定义出发合乎逻辑地推导出相应的运算律”。
2.运算定义和运算律是探索相关计算方法的依据。
完成运算、得出结果的方法、程序或途径,通常叫做运算方法或计算方法。把运算方法所要求的操作程序和要点用相对准确、规范且比较容易理解的文本语言表述出来,或者将当前运算归结为学生早先已经掌握的相关运算,就是所谓的“运算法则”。
卷和运算的交换律、结合律、分配律可仿照卷积运算的交换律、结合律、分配律推导过程证明成立,这里应强调的是,结合律与分配律应用于系统分析时主要用来等效化简复合系统:两个子系统并联组成的复合系统,其单位序列响应等于相并两子系统单位序列响应的代数和。