Ⅰ 初中数学找规律题形的方法和解题思路是什么
找规律题形的方法:
基本方法--看增幅:
(1)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较;
(2)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列);
(3)增幅不相等,但是增幅同比增加,即增幅为等比数列;
(4)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
解题思路:
(1)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
(2)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。
(3)看例题;
(4)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。
(5)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
Ⅱ 初中数学遇到规律题怎么办
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:
1.常用规律数列公式
(1)等差数列公式:若一数列呈现a1,a1+d,a1+2d,a1+3d,?,?,的数列规律,则该数列的第n项可以表示为an=a1+(n-1)d。
举例:数列1,4,7,10,13,?,?求第n项。
首先,先判定数列为等差数列,并找出公差d=3,首项a1=1,所以,第n项由公式可表示为an=1+(n-1)3=3n-2,并验算其正确性。
(2)等比数列公式:若一数列呈现a1,a1q,a1q^2,a1q^3,?,?,的数列规律,则该数列的第n项可以表示为an=a1q^(n-1)。
举例:数列1,3,9,27,81,?,?求第n项。
首先,先判定数列为等比数列,并找出公比q=3,首项a1=1,所以,第n项由公式可表示为an=13^(n-1)=3^(n-1),并验算其正确性。
(3)若对于数列各项间增幅不相等的数列举例
举例:
数列1,4,9,16,25,?,?,
an=n2.
数列1,3,6,10,15,21,?,?,该数列可以转换为1,1+2,1+2+3,1+2+3+4,?,1+2+3+?+n,即an=n(n+1)/2
数列1,5,10,17,26,?,?,
an=n^2+1.
(4)循环数列举例
数列1,5,9,1,5,9,1,5,9,?,?,对于此种数列,先找出循环周期,该数列周期C=3,所以数列中任意一项都可用a1,a2,
a3来表示,即an=3m+k(k=1,2,3)
2.常用数列解题方法
(1)简单数值的规律题型,列出数列各项,尽量多列几项(以6~7项为准);
(2)根据列出关系,查找数列关系,包括能否用首项来表示,是否与项数n存在关系,是否为循环数列(找出周期)等;
(3)除上述关系外,若为图形题,首先根据图形规律发现有无上述(2)中的数据关系,若没有,从图形出发,寻找规律,包括角、边和点等;
(4)列出第n项关系式,并代入检验是否正确。
小试牛刀:快来试试吧(小多明天公布答案哦)
Ⅲ 初一数学找规律经典题技巧解析是什么
数字找规律类型总结:
在实际解题过程中,根据相邻数之间的关系分为两大类:
(1)相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:相邻两个数加、减、乘、除等于第三数;相邻两个数加、减、乘、除后再加或者减一个常数等于第三数;前一个数的平方等于第二个数;前一个数的平方再加或者减一个常数等于第二个数;前一个数乘一个倍数加减一个常数等于第二个数。
(2)数据中每一个数字本身构成特点形成各个数字之间的规律
数据中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成;每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n;数据中每一个数字都是n的倍数加减一个常数;以上是数字推理的一些基本规律,必须掌握。但掌握这些规律后,这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。
规律型--数字的变化类解题基本技巧:
(1)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
(2)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。
(3)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(1)、(2)、技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来。
(4)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
(5)同技巧(3)、(4)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(6)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
Ⅳ 初中数学找规律题的技巧有哪些
很多同学都做过找规律的题,我整理了一些做题技巧,大家一起来看看吧。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a1+(n-1)b。
如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。
从具体实际的问题出发,观察各个数量的特点及相互之间的变化规律;由此及彼,合理联想,大胆猜想;善于类比,从不同事物中发现相似或相同点;总结规律,得出结论,并验证结论正确与否;善于变化思维方式,做到事半功倍,探索规律是一种思维活动及思维从特殊到一半的跳跃,需要有一定的归纳与综合能力,当已知的数据有很多组时,需要仔细观察,反复比较才能准确找出规律。
以上就是一些找规律题的解题技巧的相关信息,供大家参考。
Ⅳ 初中数学找规律的题怎么做````具体方法!~~
一、基本方法——看增幅
(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2
(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的总增幅;
3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:
〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位数是:2+n2-1=n2+1
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧
(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。
序列号:1,2,3,4,5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。
例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:
A:2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18答案与3有关且............即:n3+1
B:2、4、8、16.......增幅是2、4、8.......答案与2的乘方有关即:2n
(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列:
0、3、8、15、24……,
序列号:1、2、3、4、5
分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1
(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例:4,16,36,64,?,144,196,…?(第一百个数)
同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方。
(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
三、基本步骤
1、先看增幅是否相等,如相等,用基本方法(一)解题。
2、如不相等,综合运用技巧(一)、(二)、(三)找规律
3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律
4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题
参考:
http://wenku..com/view/4d0dcdd284254b35eefd3403.html
Ⅵ 初中数学题找规律有什么诀窍吗
找规律,诀窍就是,熟能生巧。
前后数字,就看和差倍分关系。
图形变换,就看面积的比例。
函数综合,就看解析式与图像。
抓住共同特征,从而一网打尽。
有时规律有点隐蔽,耐心,细致,反复观察,检验,猜想,一步步来,八九不离十,自然行云流水
手到擒拿。
Ⅶ 初中找规律的数学题技巧
初中找规律的数学题技巧:
找规律题实质:找出数列中的数与其序号之间的对应关系。
1、等差型。
将每一个数与其前一个数相比较,如果差值恒相等,为一个常数(通常称为公差),则第n个数可以表示为an=a1+(n-1)d,其中a1为数列的第一个数,d为差值,(n-1)d为第一位到第n位的差值总和。
例1、3、 6、 9、12...... 求第n位数。
解;从第二个数起,每个数都比前一个数增加3,差值为3,所以第n位数是:3+(n-1)×3=3n。
2、增幅为等差。
即将每一次增幅与前次增幅相比较,增幅差值恒相等,为一个常数。
3、等比型。
将每一个数与其前一个数相比较,如果比值恒相等,为一个常数,则第n个数可以表示为an=a1qn-1,其中a1为数列的第一个数,q为比值。
例5、3、 6、 12、24...... 求第n位数。
解;从第二个数起,每个数与前一个数的比值恒为2,所以第n位数是:3×2n-1。
4、增幅为等比。
即将每一次增幅与前次增幅相比较,增幅比值恒相等,为一个常数。
例6、2、3、5、9、17......,求数列的第8项是多少?
解:从第二束起,每个数与前一个数的增幅分别为1、2、4、8...... 所以第6个数为17+24=33,第7个数为33+25=55,第8个数为55+26=119。
5、平方型:数列为每一项序号的平方、序号的平方 + 常数、序号的平方 - 常数。
例7、已知数列的前几项为2、5、10、17.....,求数列的第n项为多少。
解:由观察可知数列的前几项分别等于12+1、22+1、32+1、42+1,那么由此可推第n项为n2+1。
例8、观察下列个数:0、3、8、15、24......试按此规律写出第100个数。
解:由观察可知数列的前几项分别等于12-1、22-1、32-1、42-1,那么由此可推第n项为n2-1,
第100个数即为:1002-1 = 9999。
6、指数。
例9、观察下列个数:1、2、4、8、16......试按此规律写出第11个数。
解:由观察可知数列的前几项分别等于20、21、22、23......那么由此可推第n项为2n-1,
第11个数即为:210= 1024。
Ⅷ 初中数学找规律题型的思路(诀窍)
初中数学找规律的题目现在出现得比较多,所以有必要掌握一定的分析方法。我以为一般分为四步去考虑:1、弄清题意,千万要仔细读懂。2、从最简单的开始,逐步找出对应数据3、分析数据关系,有时可借用图形4、根据第三步的分析,依次验证每组对应数据间的计算方法是否具有一般性,如果说有,就可写出通式来了。
Ⅸ 初中数学找规律的题怎么做
基本思路是:
1、求出数列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的总增幅;
3、数列的第1位数加上总增幅即是第n位数。
一般情况下,找规律的题目第一二问都是比较简单的,如果实在找不到规律,也要把自己思考的思路写下去,能拿一分是一分。
Ⅹ 初一数学找规律题技巧
基本方法: (1)从具体的.实际的恩提出发,观察各个数量的特点及相互之间的变化规律。 (2)由此及彼,合理联想,大胆猜想 (3)善于类比,从不同事物中发现相似或相同点; (4)总结规律,得出结论,并验证结论正确与否; (5)在探索规律的过程中,要善于变化思维方式,做到事半功倍 技巧平台: 探索规律是一种思维活动,及思维从特殊到一半的跳跃,需要有一定的归纳与综合能力。当以知的数据有很多组时,需要仔细观察,反复比较,才能准确找出规律。需用到的数学方法有:分类讨论法.转化法.归纳法. (1)通过观察.分析.综合.归纳.概括.推理.判断等一系列探索活动,解答有关探索规律性问题的特点是问题的结论或条件不直接给出,需要逐步确定需要的结论和条件。 (2)解答这类题的关键是认真审题,掌握规律.合理推测.认真验证,从而得出问题的正确结论。