❶ 数学建模 什么意思
数学模型就是对实际问题的一种数学表述。
具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。
数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。
❷ 什么是数学建模
数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模是使用数学模型解决实际问题。
数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
❸ 数学建模大赛到底是干什么的一定要会编程吗
我曾参加过数学建模竞赛。全国大学生数学建模大赛目的是培养大学生能够在学习知识的同时,学会运用知识解决实际问题,学会将实际问题转化成数学问题,用数学知识来解决实际问题。并且,培养小组团结合作精神。必须是三人一组,不过最好可以是不同专业的三个人,这样知识面广,好解决问题,分工合作。最好会编程,但是不会的话,也可以求助会的人,比如求助你的老师或者会编程的同学。希望我的回答对你有帮助,也希望你能参加,这个大赛很能锻炼人。
❹ 参加数学建模比赛的意义
【摘要】本文重点分析了数学建模的特点,探讨了计算机应用与数学建模意识的培养之间密不可分的联络,阐述了计算机在数学建模竞赛中的作用和地位,最后介绍了笔者参加建模竞赛与学生参加竞赛的经验与感受。
【关键词】建模意识 计算机应用 数学建模竞赛 数学实验
一、引言
在利用数学方法分析和解决实际问题时,要求从实际错综复杂的关系中找出其内在的规律,然后用数学的语言--即数字、公式、图表、符号等刻画和描述出来,然后经过数学与计算机的处理--即计算、迭代等得到定量的结果,供人们进行分析、预报、决策和控制,这种把实际问题进行合理的简化假设归结为数学问题并求解的过程就是建立数学模型,简称建模。而这种成功的方法和技术反映在培养专门人才的大学教学活动中,就是数学建模教学和竞赛。数学建模简而言之就是应用数学模型来解决各种实际问题的过程,也就是通过对实际问题的抽象、简化、确定变数和引数,并应用某些规律建立变数与引数间的关系的数学问题(或称一个数学模型),再借用计算机求解该数学问题,并解释、检验、评价所得的解,从而确定能否将其用于解决实际问题的多次回圈、不断深化的过程。
二、数学建模的特点
从1985年开始美国都会举办一年一度的数学建模竞赛(MathematicalContestinModeling,缩写:MCM),而我国自1992年举办首届全国大学生数学建模竞赛以来,它已经成为全国大学生科技竞赛的重要专案之一,全国大学生数学建模竞赛是面向全国大学生的群众性科技活动;竞赛要求学生(可以是任何专业)以三人为一组参加竞赛,可以自由的收集资讯、调查研究,包括使用计算机和任何软体,甚至上网查询,但不得与团队以外的任何人讨论,在三天时间内,完成一篇包括模型的假设、建立、求解,计算方法的设计和用计算机对解的实现,以及结果的分析和检验,模型的改进等方面的论文。这一活动对于提高大学生素质,促进高校数学与计算机教学改革都起着积极的推动作用。
多年来,一年一度的全国大学生数学建模竞赛和国际大学生数学建模竞赛,给传统的高等数学教育改革带来了新的思路和评价标准,《数学建模》课也从仅仅为参赛队员培训,扩充套件为一门比较普及的选修课,同时,《数学试验》作为一门新的课程也应运而生。数学建模与数学试验教学的重点是高等与现代数学的深层应用和面向问题的设计,而不是经典理论的深入研讨和系统论证。数学建模问题绝大部分来自一些具体的科研课题或实际工程问题,而不同于普通的数学习题或竞赛题。数学建模问题的特点是:面向现实生活的应用,有相关的科研背景,综合性强,涉及面广,因素关系复杂,缺乏足够的规范性,难以套用传统成熟的解决手段,资料量庞大,可采取的算法也比较复杂,结果具有一定的弹性空间,需要一定的伴随条件,许多问题得到的只能是近似解。
另一方面,建模问题不同于理论研究,它重在对实际问题的处理,而不是深层次纯粹数学理论或者世界难题。所以,求解建模问题大都借助各种辅助工具或手段,尤其是计算机软体的应用,大大地提高了解题效率和质量。总之,《数学建模》是一门技术应用的课程,而不是基础教育课程,它强调的是如何更好更快地解决问题,如何充分利用各种科技手段作为技术支援,因而计算机的应用已经成为其不可或缺的一项基本组成。与此相关的计算机技术主要有两部分:一是如何将实际问题或模型转化或表述为可用计算机软体或程式设计实现的算法;二是采用哪些应用软体或程式设计技术可以解决这些问题。显然,后者是前者的基础,确定了工具方案,才有相应的解决方案。
由于数学建模的以上特点,决定了数学建模与计算机具有密切相关的联络,计算机在数学建模思想意识培养中发挥了重要的作用,主要是提供了有力工具和技术支援,它是更好更快进行建模的基础。计算机水平的高低可以说决定一个团队整体的建模水平。
三、数学建模与计算机的关系
计算机的产生正是数学建模的产物,20纪40年代,美国为了研究弹道导弹飞行轨迹的问题,迫切需要一种计算工具来代替人工计算,计算机在这样的背景下应运而生。计算机的产生与发展又极大地推动了数学建模活动,计算机高速的运算能力,非常适合数学建模过程中的数值计算;它的大容量贮存能力以及网路通讯功能,使得数学建模过程中资料存贮、检索变得方便有效;它的多媒体化,使得数学建模中一些问题能在计算机上进行更为逼真的模拟实验;它的智慧化,能随时提醒、帮助我们进行数学模型求解。此外,如Mathlab、Maple、SAS、SPSS等一批优秀数学软体的出现更使数学建模如虎添翼。再者,数学建模与生活实际密切相关,所采集到的资料量多,而且比较复杂,比如DVD线上租赁,长江水质的评价和预测,银行贷款和分期付款等,往往计算量大,需要借助于计算机才能快捷、简便地完成。数学建模竞赛与以往所说的那种数学竞赛(纯数学竞赛)不同,它要用到计算机,甚至离不开计算机,但却又不是纯粹的计算机竞赛,它涉及到物理、化学、生物、医学、电子、农业、军事、管理等各学科、各领域,但又不受任何一个具体的学科、领域的限制。数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。例如,模型求解时,需要上机计算、编制软体、绘制图形等,数学建模竞赛中印表机随时可能使用,同时,数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行电脑科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,电脑科学的发展也是建立在数学基础之上的,许多为计算机的发展做出杰出贡献的科学家都出身于数学专业,显而易见,比赛中的一个重要环节是使用计算机来解决问题,这对使用计算机的能力的提高是很明显的。
数学建模的目的是构建数学建模意识,培养学生创造性思维能力,在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力,培养创造性思维能力,主要应培养学生灵活运用基本理论解决实际问题的能力,在数学教学中培养学生的建模意识实质上是培养、发展学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动,它既具有一定的理论性,又具有较强的实践性,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立、自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力、直觉思维、猜测、转换、构造等能力,而这些数学能力正是创造性思维所具有的最基本的特征,在培养创新思维过程中要求必须具有一定的计算机基础,只有具有一定的计算机知识才能更好的处理资料,发现事物之间的内在的联络,才能更好的进行知识的转换,才能更好的构造出最优的模型。总之,具有必备的计算机知识是培养建模意识的关键,是培养数模创新能力的前提。计算机也为数学建模竞赛活动提供了有力的工具。
四、计算机在数学建模中的运用
计算机的运用,不仅方便我们上网查询建模问题所涉及的知识,相关的文献资料,而且方便我们处理资料,进行模型求解,模型检验。
建模相关计算机软体是我们在建立模型,处理模型必需掌握的软体,他们各有自己的特点,使用他们时要注意区分他们的优缺点,选择更合适的软体来处理问题,常用软体包含一下几种型别:
1、通用数学软体。主要包括有Matlab、Mathematica、Maple和Mathcad等,在能力和用法上,都比较相近,主要用于绘制已知函式的图形和进行计算,支援完全的符号运算、精确计算和任意精度的近似计算。它们都能对数学中的微积分、解析几何、线性代数、微分方程、计算方法、概率统计等诸多领域的常见问题进行求解,但也有各自特点:例如Mathematica的符号计算能力较为强大,而Matlab在数值计算、矩阵计算和图形绘制方面更有优势,因此可以结合起来使用。
2、Lingo/Lindo 计算最优化问题的专用数学软体。Lindo用于求解线性规划和二次规划,Lingo除了具有Lindo的全部功能外,还可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解以及代数方程求根等,二者都可以求解整数规划。。
3、统计分析软体,SPSS名为社会学统计软体包,主要功能有:基本统计分析、定义表、比较平均数;一般线性模式;相关分析;回归分析、逻辑线性分析、聚类和判别分析、因子分析、非引数检验、时间序列、比例、多元反应等。SAS提供许多资料库查询统计功能,在概率和统计的经典处理计算方面提供了丰富的函式支援。是统计专业软体。
4、高阶程式语言种类较多,如C、C++、C#、Basic、Delphi和Java等。
5、绘图软体。将一些图表加入附件可以为文章增色。数学软体只能绘制已知函式的图形,若是要绘制一个大致的图形,就必须使用绘图软体。可以使用几何画板、Photoshop、Flash等。因此,数学建模竞赛今后的趋势是,要求学生对各方面的知识都有所了解,对学生的计算机知识要求也更高,近年来的数学建模竞赛几乎所有的竞赛题目都涉及大量的计算或逻辑运算,因此不掌握计算机和相关数学软体的使用是难以取得好成绩的;又由于竞赛题目来自不同的领域,事先又不了解,而利用Inter可以迅速查到相关资料,这也有助于在竞赛中取得好成绩,由此可见,计算机和数学建模之间具有密不可分的联络,两者的有机结合,有效的提高了高校学生灵活运用理论知识的能力、知识的迁移能力、实际应用能力以及分析问题和解决问题。
五、结束语
笔者上大学期间参加了两次数模竞赛,近几年也参加了学院的数学建模竞赛辅导,能够深刻从中体会到其中的酸甜,也领悟到数学建模竞赛的精髓;它不仅有利于学生更好的掌握知识、运用知识,也有利于高校的科研和教学,使学生和教师能在平时的学习、工作中自动形成勤于思考的好习惯,数学建模竞赛与学生毕业以后工作时的条件非常相近,是对学生业务、能力和素质的全面培养,特别是开放性思维和创新意识,这项活动的开展有利于学生的全面素质的培养,既丰富、活跃了广大学生的课外生活,也为优秀学员脱颖而出创造了条件。不少参赛培训的同学有共同的体会,一次参赛终身受益。数学建模是通向未来的成功之路,不管名次如何,每个参赛者都是成功者。总之,利用计算机技术来开展数学建模,必将有利于数学模型的建立、求解、演算和表达,为探索者创造出理想的背景,同时也使我们的计算机用得越来越好、越来越活,数学建模中计算机的应用,使数学建模的进步如虎添翼;计算机中数学建模方法的使用,使得计算机的发展日益迅速,计算机技术与数学建模的结合,必将推动两者的快速发展。
❺ 数学建模的意义
从以下几个方面说一下:
1.数学建模提高了自己对数学的兴趣。
2.数学建模提高了自己的独立思考的能力。
3.数学建模锻炼了我们团队合作的能力。
4.数学建模使我们对论文的格式有了一个了解。
5.数学建模丰富了我们的业余生活。
6.数学建模能使我们找到志同道合的朋友。
数学建模是我们对计算机的知识也有了一定的加深。
可以从上面的几个方面总结一下参加数学建模的意义,希望能对你有所帮助。
❻ 数学建模是什么啊
在我的理解:
数学建模就是指对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。他的意义在于利用数学方法解决实际问题。
如果想要学好数学建模必须学习:高数,线性代数,C语言,还涉及到模糊数学(部分),同时在建模过程中学会MATLAB和lingo等软件的使用。能够培养一个人的开发能力和自主学习能力,还是很有用处的。
数学模型(姜启源、谢金星) 很适合新手,在内容编排上也是国产风格,按模型知识点分类,一块一块讲,面面俱到。
数学建模方法与分析.(新西兰)Mark.M.Meerschaert 它是典型的外国教材风格,从一个模型例子开始,娓娓道来,跟你讲述数学建模的方方面面,其中反复强调的一个数学建模五步法,后来细细体会起来的确很有道理,看完大部分这本书的内容,就可以体会并应用这个方法了。
❼ 数学建模的目的和方法
目的:数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)
方法:模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息.以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题.要求符合数学理论,符合数学习惯,清晰准确.
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设.
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具).
利用获取的数据资料,对模型的所有参数做出计算(或近似计算).
模型分析
对所得的结果进行数学上的分析.
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性.如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释.如果模型与实际吻合较差,则应该修改假设,再次重复建模过程.
模型应用
应用方式因问题的性质和建模的目的而异.
❽ 数学建模是关于什么的,具体做些什么大神们帮帮忙
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。 数学建模的几个过程: 模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。 模型分析:对所得的结果进行数学上的分析。 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。 模型应用:应用方式因问题的性质和建模的目的而异。