A. 初二数学一次函数知识点归纳是什么
1、函数概念。
在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数。
2、一次函数和正比例函数的概念。
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。
说明:
(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定。
(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数。
(3)当b=0,k≠0时,y=b仍是一次函数。
(4)当b=0,k=0时,它不是一次函数。
B. 初二数学里的一次函数到底咋理解
做速度不变的运动,路程和时间的关系就是一次函数。
一次函数可以理解为,当每次增加的量不变时,总量就和增加的次数保持一致的关系,就是线性的一次函数。
C. 初中数学一次函数知识点总结
函数在初中数学中是一个很重要的知识点,下面总结了初中数学一次函数的相关知识点,供大家参考。
一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。
1.一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式。
2.当b=0,k≠0时,y=kx仍是一次函数。
3.当k=0,b≠0时,它不是一次函数。
4.正比例函数是一次函数的特例,一次函数包括正比例函数。
1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
3.正比例函数的图像总是过原点。
4.k,b与函数图像所在象限的关系:
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
当k>0,b>0时,直线通过一、二、三象限;
当k>0,b<0时,直线通过一、三、四象限;
当k<0,b>0时,直线通过一、二、四象限;
当k<0,b<0时,直线通过二、三、四象限;
当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,
k是斜率定夹角,b与y轴来相见,
k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:√[(x1-x2)2+(y1-y2)2]
5.求两个一次函数式图像交点坐标:解两函数式
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2)
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0)与y轴的交点:(0,b)。
D. 初中一次函数到底是谁么意思啊,求概念!
自变量x的指数是一次的函数叫一次函数.
一次函数的正式定义是:
形如y=kx+b叫一次函数.其中,k是非零常数,b是常数.
它的图像是一条直线.
实际应用:
1.我每小时走5公里,x小时走y公里.
这里y=5x
k=5,b=0
是一次函数
2.我从A地散步2公里到B地,然后从B地每小时走5公里用了x小时,
这时,我已走过的路程是
y=5x+2
这里k=5,b=2
是一次函数