A. 高中数学 什么是放缩法用在哪里,能解决什么问题
这个是用来证明不等式的.比如说比较不等式大小,不等式A最大值为a,不等式B最小值为b,b大于a,就说明不等式B大于A.缩放发用处很多的,证明题很多都会用到.
B. 数学放缩法怎么用啊
放缩法是不等式的证明里的一种方法,其他还有比较法,综合法,分析法,反证法,代换法等。
所谓放缩法,要证明不等式a>b成立,有时可以将它的一边放大或缩小,寻找一个中间量,如将a放大成c,即a<c,后证c<b,这种证法便称为放缩法,常用的放缩技巧有:(1)舍掉(或加进)一些项;(2)在分式中放大或缩小分子或分母;(3)应用基本不等式进行放缩
放缩法的理论依据主要有:1.不等式的传递性;2.等量加不等量为不等量;3.同分子(母)异分母(子)的两个分式大小的比较。
放缩法是贯穿证明不等式始终的指导变形方向的一种思考方法
注意:1.放缩的方向要一致。
2.放与缩要适度
C. 数学问题--什么叫放缩法
放缩法的定义所谓放缩法,要证明不等式A<B成立,有时可以将它的一边放大或缩小,寻找一个中间量,如将A放大成C,即A<C,后证C<B,这种证法便称为放缩法。 放缩法是不等式的证明里的一种方法,其他还有比较法,综合法,分析法,反证法,代换法,数学归纳法等。 编辑本段放缩法的主要理论依据(1)不等式的传递性; (2)等量加不等量为不等量; (3)同分子(母)异分母(子)的两个分式大小的比较。 放缩法是贯穿证明不等式始终的指导变形方向的一种思考方法 。 编辑本段放缩法的常见技巧(1)舍掉(或加进)一些项。 (2)在分式中放大或缩小分子或分母。 (3)应用基本不等式放缩。 (4)应用函数的单调性进行放缩。 (5)根据题目条件进行放缩。 编辑本段使用放缩法的注意事项(1)放缩的方向要一致。 (2)放与缩要适度。 (3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。 (4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。所以对放缩法,只需要了解,不宜深入。 编辑本段放缩法相关例题[例1] 证明:1/2-1/(n+1)<1/2^2+1/3^2+......+1/n^2<(n-1)/n (n=2,3,4...) 解:∵1/2^2+1/3^2+......1/n^2>1/2*3+1/3*4+......+1/n*(n+1)=1/2-1/3+1/3-1/4+......+1/n-1/(n-1)=1/2-1/(n+1)即左侧 1/2^2+1/3^2+......1/n^2<1/1*2+1/2*3+......+1/(n+1)*n=1-1/2+1/2-1/3+......1/(n-1)-1/n=1-1/n 即右侧 ∴1/2-1/(n-1)<1/2^2+1/3^2+......+1/n^2<(n-1)/n满意望采纳
D. 高中数学中放缩法的概念及其定义,希望能详细点,本人基础不好,谢谢了。最好有例题。
所谓放缩法,要证明不等式a放缩法的主要理论依据(1)不等式的传递性;
(2)等量加不等量为不等量;
(3)同分子(母)异分母(子)的两个分式大小的比较。
放缩法是贯穿证明不等式始终的指导变形方向的一种思考方法
放缩法的常见技巧(1)舍掉(或加进)一些项。
(2)在分式中放大或缩小分子或分母。
(3)应用基本不等式放缩(例如均值不等式)。
(4)应用函数的单调性进行放缩。
(5)根据题目条件进行放缩。
(6)构造等比数列进行放缩。
(7)构造裂项条件进行放缩。
(8)利用函数切线、割线逼近进行放缩。
例1]
证明:1/2-1/(n+1)<1/2^2+1/3^2+......+1/n^2解:∵1/2^2+1/3^2+......1/n^2>1/2*3+1/3*4+......+1/n*(n+1)=1/2-1/3+1/3-1/4+......+1/n-1/(n+1)=1/2-1/(n+1)即左侧
1/2^2+1/3^2+......1/n^2<1/1*2+1/2*3+......+1/(n-1)*n=1-1/2+1/2-1/3+......1/(n-1)-1/n=1-1/n
即右侧
∴1/2-1/(n-1)<1/2^2+1/3^2+......+1/n^2
E. 数学导数放缩法技巧
放缩法是高中数学中一种重要的数学方法,尤其在证明不等式时经常用到. 由于近几年数列不等式在高考中的难度要求降低,放缩法的应用重点也逐渐从证明数列不等式转移到导数压轴题中,尤其是在导数不等式证明中更是大放异彩. 下面试举几例,以供大家参考.
利用基本不等式放缩,化曲为直
利用单调性放缩,化动为静
评注 借助导数研究函数单调性是证明初等不等式的重要方法.
证法1 直接求导证明,由于其含有参数m,因而在判断g( x) 的零点和求f( x) 取得最小值f( x0) 时显得较为麻烦;
证法2 利用对数函数y = ln x 的单调性化动为静,证法显得简单明了. 此外,本题也是处理函数隐零点问题的一个经典范例.
03
活用函数不等式放缩,化繁为简
有两个常用的函数不等式:
它们源于高中教材( 人教A 版选修2 - 2,P32) 的一组习题,曾多次出现在高考试题中.
F. 数列中的放缩法如何使用详细!
(1)舍掉(或加进)一些项。
(2)在分式中放大或缩小分子或分母。
(3)应用基本不等式放缩(例如均值不等式)。
(4)应用函数的单调性进行放缩。
(5)根据题目条件进行放缩。
(6)构造等比数列进行放缩。
(7)构造裂项条件进行放缩。
(8)利用函数切线、割线逼近进行放缩。
(9)利用裂项法进行放缩。
(10)利用错位相减法进行放缩。
放缩法的技巧:
1、根据不等式符号决定放大还是放小;
2、常用的放缩方向:朝等比放缩和朝裂项相消法放缩;
3、放缩“度”的调节方法:不同形式放缩。
(6)什么时候用数学放缩法扩展阅读:
放缩法的注意事项:
(1)放缩的方向要一致。
(2)放与缩要适度。
(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。
(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。