A. 分层抽样的计算公式是什么
p=Cm(t0-t)。
分层抽样样本量的计算公式:p=Cm(t0-t)。分层抽样法也叫类型抽样法。它是从一个可以分成不同子总体(或称为层)的总体中,按规定的比例从不同层中随机抽取样品(个体)的方法。
1、首先,辩明突出的(重要的)人口统计特征和分类特征,这些特征与所研究的行为相关。例如,研究某种产品的消费率时,按常理认为男性和女性有不同的平均消费比率。
2、为了把性别作为有意义的分层标志,调查者肯定能够拿出资料证明男性与女性的消费水平明显不同。用这种方式可识别出各种不同的显着特征。调查表明,一般来说,识别出6个重要的显着特征后,再增加显着特征的辨别对于提高样本代表性就没有多大帮助了。
3、确定在每个层次上总体的比例(如性别已被确定为一个显着的特征,那么总体中男性占多少比例,女性占多少比例呢?)。利用这个比例,可计算出样本中每组(层)应调查的人数。
最后,调查者必须从每层中抽取独立简单随机样本。
例如:
某校高中生一年级250人,二年级350人,三年级400人,分层抽样抽取200人,如何抽取?
总人数250+350+400=1000。
200÷1000=0.2。
一年级250×0.2=50。
二年级350×0.2=70。
三年级400×0.2=80。
B. 分层抽样的计算公式是什么
分层抽样的计算公式是p等于Cmt0减t。分层抽样公式是K抽样间距等于N总体规模除以n样本规模,分层抽样是先将总体的单位按某种特征分为若干次级总体,然后再从每一层内进行单纯随机抽样,组成一个样本的统计学计算方法。
分层抽样的特点
一般地在抽样时,将总体分成互不交叉的层,然后按一定的比例,从各层次独立地抽取一定数量的个体,将各层次取出的个体合在一起作为样本,这种抽样方法是一种分层抽样,又称分类抽样或类型抽样。
将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性,分层抽样的计算公式是设一个总体有N个个体。
C. 高中数学统计中的抽样方法有哪些各有何优势
1、简单随机抽样
优点:当总体内观察单位数与样本例数都不大时拥有实施,均数及其标准误的计算也比较简单。
2、分层抽样
优点:易于理解、简单易行。容易得到一个按比例分配的样本。
3、系统抽样
优点:由于分层后各层内的个体同质性质增强,使得抽样误差比较小。
4、整群抽样
优点:便于组织,节省人力、物力、时间,容易控制调查质量。
分层抽样法各层样本数的确定方法
1、分层定比。即各层样本数与该层总体数的比值相等。例如,样本大小n=50,总体N=500,则n/N=0.1 即为样本比例,每层均按这个比例确定该层样本数。
2、奈曼法。即各层应抽样本数与该层总体数及其标准差的积成正比。
3、非比例分配法。当某个层次包含的个案数在总体中所占比例太小时,为使该层的特征在样本中得到足够的反映,可人为地适当增加该层样本数在总体样本中的比例。但这样做会增加推论的复杂性。
D. 什么是分层抽样(数学问题)
简单来说,分层抽样时按层不同,每一层次都要抽样.如对一工厂100人抽样20人,此厂工人80,技术员20,则对工人抽样16人,技术员抽样4人.分层保证了抽样的多样性.简单了解请看高中数学,具体研究看高数
E. 分层抽样的应用条件是什么
分层抽样尽量利用事先掌握的信息,并充分考虑了保持样本结构和总体结构的一致性,这对提高样本的代表性是很重要的。当总体是由差异明显的几部分组成时,往往选择分层抽样的方法医学。
分层抽样法也叫类型抽样法。它是从一个可以分成不同子总体(或称为层)的总体中,按规定的比例从不同层中随机抽取样品(个体)的方法。这种方法的优点是,样本的代表性比较好,抽样误差比较小。缺点是抽样手续较简单随机抽样还要繁杂些。定量调查中的分层抽样是一种卓越的概率抽样方式,在调查中经常被使用。
F. 分层抽样法的分层抽样
也称分类或类型抽样,是先按与研究内容有关的因素或指标将总体各单位(或个体)分为不同的等级或类型,即层,然后从每一层中按比例或不按比例再用简单随机抽样或机械抽样的方法抽取一定数量的个体构成样本。最常用的是按比例抽样。分层抽样的原则是各层内部的差异要尽可能小,而层与层之间的差异要大。
例如:某校抽样调查初中学生读课外书的情况,全校共有学生485人,其中一年级180人,二年级160人,三年级145人,如果从全校学生中抽取100人进行调查,那么不同年级可视为不同层次,按每个年级的人数比例抽样。三个年级学生人数占全校总人数的比例分别为37%。33%,30%,则每年级抽取的人数分别为37(即100*37%)人,33人,30人,每个年级的学生可再通过简单随机抽样或机械抽样的方法确定。
例如,一个单位的职工有500人,其中不到35岁有125人,35岁至49岁的有280人,50岁以上的有95人.为了了解这个单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,由于职工年龄与这项指标有关,决定采用分层抽样方法进行抽取.因为样本容量与总体的个数的比为1:5,所以在各年龄段抽取的个数依次为125/5,280/5,95/5,即25,56,19。
【摘自数学书】一般地,在抽样时,将总体分成互不交叉的层,然后按一定的比例,从各层次独立地抽取一定数量的个体,将各层次取出的个体合在一起作为样本,这种抽样方法是分层抽样。
统计学中的。就是先将总体的单位按某种特征分为若干次级总体(层),然后再从每一层内进行单纯随机抽样,组成一个样本。 多次分层抽样法是指对调查母体进行分层的次数在两次或两次以上的分层抽样方法。采用这种抽样方法,是对调查母体分层以后,再对调查副次母体进行分层,最后仍以单纯随机抽样方法抽取样体。
G. 高中数学三种抽样方法
三种抽样方法分别是:一、简单随机抽样;二、系统抽样;三、分层抽样。
系统抽样是由于总体中个体数较多,但彼此无较大差异,从而分割整体,再在各部分进行简单随机抽样。
分层抽样适用于总体由差异明显的几部分组成的情况,例如铁精矿水分检测,靠近船底的铁精矿和表面部分的铁精矿的水分含量显然有较大差异,应该分层抽样。
H. 分层抽样的计算公式
分层抽样最优分配公式如下:
分层抽样从一个可以分成不同子层的总体中,按规定的比例从不同层中随机抽取个体的方法。这种方法的优点是,样本的代表性比较好,抽样误差比较小。缺点是抽样手续较简单随机抽样还要繁杂些。定量调查中的分层抽样是一种卓越的概率抽样方式,在调查中经常被使用。
(8)数学分层抽样怎么用扩展阅读:
分层抽样与简单随机抽样相比,往往选择分层抽样,因为它有显着的潜在统计效果。也就是说,如果从相同的总体中抽取两个样本,一个是分层样本,另一个是简单随机抽样样本,那么相对来说,分层样本的误差更小些。另一方面,如果目标是获得一个确定的抽样误差水平,那么更小的分层样本将达到这一目标。
分层抽样根据在同质层内抽样方式不同,又可分为一般分层抽样和分层比例抽样,一般分层抽样是根据样品变异性大小来确定各层的样本容量,变异性大的层多抽样,变异性小的层少抽样,在事先并不知道样品变异性大小的情况下,通常多采用分层比例抽样。
I. 简单随机抽样和分层抽样在什么情况下使用
优质解答
简单随机抽样是在各个体的差异不明显的情况下使用.比如一些同学的成绩相差不大的时候,可以随机抽取几个同学的成绩进行分析研究.
分层抽样是在个体的差异明显的情况下使用.比如几个班的同学的数学成绩有明显差异,这时就不能只从一个班中调查,因为这时的某个班同学的成绩可能偏高,也可能偏低,这种情况下要在各个班中分别抽取一些同学的成绩进行研究.
J. 分层抽样
分层抽样 1、知识与技能:
(1)正确理解分层抽样的概念;
(2)掌握分层抽样的一般步骤;
(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法 进行抽样。
2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学 知识解决实际问题的方法。
3、情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估计 与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。
4、重点与难点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本, 并恰当的选择三种抽样方法解决现实生活中的抽样问题。
教学设想: 教学设想 【创设情景】 假设某地区有高中生 2400 人,初中生 10900 人,小学生 11000 人,此地 教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的 小学生中抽取 1%的学生进行调查,你认为应当怎样抽取样本? 【探究新知 探究新知】 探究新知 一、分层抽样的定义。 一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例, 从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本, 这种抽样的方法叫分层抽样。 说明】 【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:
(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体 互不交叉,即遵循不重复、不遗漏的原则。
(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机 抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量 的比相等。 二、分层抽样的步骤: (1)分层:按某种特征将总体分成若干部分。
(2)按比例确定每层抽取个体的个数。
(3)各层分别按简单随机抽样的方法抽取。
(4)综合每层抽样,组成样本。
【说明】 (1)分层需遵循不重复、不遗漏的原则。
(2)抽取比例由每层个体占总体的比例确定。
(3)各层抽样按简单随机抽样进行。
探究交流:
(1)分层抽样又称类型抽样,即将相似的个体归入一类(层) ,然后每层抽 取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必 ( ) 须进行A、每层等可能抽样 B、每层不等可能抽样 C、所有层按同一抽样比等可能抽样
(2)如果采用分层抽样,从个体数为 N 的总体中抽取一个容量为 n 样本,那么每个个体被抽到的可能性为 ( ) A. N 1 B. n 1 C. N n D. N n
点拨: 点拨: (1)保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽 共同的特征,为了保证这一点,分层时用同一抽样比是必不可少 的,故此选 C。
(2)根据每个个体都等可能入样,所以其可能性本容量与总体容量 比,故此题选 C。
知识点 2 简单随机抽样、系统抽样、分层抽样的比较 适 用 类 别 共同点 各自特点 联 系 范 围
(1)抽样过程中每 总体个 简 单 从总体中逐个抽取 个个体被抽到 数较少 随 机 的可能性相等 将总体均分成几部 抽 样 在起始部分 总体个
(2)每次抽出个体 分, 按预先制定的规 样时采用简 数较多 后不再将它放 则在各部分抽取 随机抽样 系 统 回,即不放回 抽 样 总体由 抽样 分层抽样时采 差异明 将总体分成几层, 用简单随机抽 显的几 分 层 分层进行抽取 样或系统抽样 部分组 抽 样 成 【例选精析】 例选精析】
例1、 某高中共有 900 人,其中高一年级 300 人,高二年级 200 人,高三年级 400 人,现采用分层抽样抽取容量为 45 的样本,那么高一、高二、高三各 年级抽取的人数分别为 A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20 分析]因为 300:200:400=3:2:4,于是将 45 分成 3:2:4 的三部分。设 [分析 分析 三部分各抽取的个体数分别为 3x,2x,4x,由 3x+2x+4x=45,得 x=5,故 高一、高二、高三各年级抽取的人数分别为 15,10,20,故选 D。
例 2:一个地区共有 5 个乡镇,人口 3 万人,其中人口比例为 3:2:5:2:3, 从 3 万人中抽取一个 300 人的样本,分析某种疾病的发病率,已知这种疾 病与不同的地理位置及水土有关, 问应采取什么样的方法?并写出具体过 程。
[分析 分析]采用分层抽样的方法。 分析 解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明 显,因而采用分层抽样的方法,具体过程如下:
(1)将 3 万人分为 5 层,其中一个乡镇为一层。
(2)按照样本容量的比例随机抽取各乡镇应抽取的样本。 300×3/15=60 (人) 300×2/15=100 , (人) 300×2/15=40 , (人) 300×2/15=60 , (人) ,因此各乡镇抽取人数分别为 60 人、40 人、100 人、40 人、60 人。 (3)将 300 人组到一起,即得到一个样本。