Ⅰ 数学真正的含义是什么
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使所有的人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着奇普,印加帝国时所使用的计数工具。数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικ�0�2�0�9(mathematikós)意思是“学问的基础”,源于μ�0�4θημα(máthema)(“科学,知识,学问”)。
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。
从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”
Ⅱ 数学的意义。
数学的意义:
1、数学是人类探究世界,研究自然界任何事物的核心;
2、数学衍生出了物理学、化学、生物学,数学不断推动着人类的发展;
3、数学是公理、约定的支点,有了数学,研究才得以继续;
4、数学衍生出二维、三维、高维,是这些事物存在的基础。
一、中学数学有什么用?
1、初中数学学什么?
我们以现行初中数学教材(六三制)为例:
七年级(上):有理数;整式的加减;一元一次方程;几何图形初步;
七年级(下):相交线与平行线;实数;平面直角坐标系;二元一次方程;不等式和不等式组;数据的收集、整理与描述;
八年级(上):三角形;全等三角形;轴对称;整式的乘法与因式分解;分式;
八年级(下):二次根式;勾股定理;平行四边形;一次函数;数据的分析;
九年级(上):一元二次方程;二次函数;旋转;圆;概率初步;
九年级(下):反比例函数;相似;锐角三角函数;投影和视图。
这6册书的内容其实可以按照研究的内容重新整理成为3个模块。
代数模块:有理数;整式的加减;一元一次方程;实数;平面直角坐标系;二元一次方程;不等式和不等式组;整式的乘法与因式分解;分式;二次根式;一次函数;一元二次方程;二次函数;反比例函数。
几何模块:几何图形初步、相交线与平行线;三角形;全等三角形;轴对称;勾股定理;平行四边形;旋转;圆;相似;锐角三角函数;投影和视图。
统计模块:数据的收集、整理与描述;数据的分析;概率初步。
数学在难度上的突然提升一般在初二上学期。这个时期,无论几何证明还是代数式化简,其解题对模式识别和技巧要求很高,学生需要一定量的训练,这个过程是枯燥乏味的;同时还需要一定的观察力,成绩拉开是在这个阶段,不少学生对数学兴趣丧失也是在这个阶段。
2、高中数学学什么?
原新课标高中教材:
必修部分:
必修1:集合;函数(概念、性质、一次函数和二次函数);基本初等函数I(指数函数、对数函数和幂函数)
必修2:立体几何初步(空间几何体、位置关系);解析几何初步(平面直角坐标系、直线方程、圆方程、空间直角坐标系)
必修3:算法初步;统计;概率
必修4:基本初等函数II(三角函数);平面向量;三角恒等变换
必修5:解三角形;数列;不等式
选修1系列(文科):
选修1-1:常用逻辑用语;圆锥曲线与方程;导数及其应用
选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图
选修2系列(理科):
选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何
选修2-2:导数及其应用、推理与证明、数系的扩充与复数
选修2-3:计数原理、概率、统计案例
其他选修课
3-1数学史、3-3球面几何、3-4对称与群论、4-1几何证明选讲、4-2矩阵与变换、4-4坐标系和参数方程、4-5不等式选讲、4-6初等数论初步、4-7优选法与试验设计初步、4-9风险与决策。
很多省份高考选考题是从4-1几何证明选讲、4-4坐标系和参数方程、4-5不等式选讲这三部分中出题,应该说是比较适应大学高等数学的学习的,但没选择矩阵还是令人遗憾。
新版新课标高中教材
必修A版共两册:
第一册:集合与常用逻辑用语;一元二次函数、方程和不等式;函数的概念和性质;指数函数与对数函数;三角函数
第二册:平面向量及其应用;复数;立体几何初步;统计;概率
必修B版共四册:
第一册:集合与常用逻辑用语;等式与不等式;函数;
第二册:指数函数、对数函数与幂函数;统计与概率;平面向量初步
第三册:三角函数;向量的数量积和三角恒等变换;
第四册:解三角形;复数;立体几何初步
选择性必修共三册:
第一册:空间向量与立体几何;直线和圆的方程;圆锥曲线的方程
第二册:数列;一元函数的导数及其应用
第三册:计数原理;随机变量及其分布;成对数据的统计分析
综上,高中内容也可大致归纳为三个模块:
函数与代数模块:集合与常用逻辑用语;函数的概念和性质;初等函数(指数函数、对数函数、幂函数、三角函数包括三角恒等变换);平面向量(平面向量初步、向量的数量积、解三角形);等式与不等式;数列;一元函数的导数及其应用
几何模块:1)立体几何—空间几何体;空间位置关系;空间向量与立体几何;2)解析几何—直角坐标系;直线和圆的方程;圆锥曲线的方程
概率与统计模块:统计与概率(数据的收集、特征和表示、样本估计总体;随机事件和独立性、古典概型);计数原理(排列组合、二项式);随机变量及其分布(随机变量和条件概率);成对数据的统计分析(相关和回归)
3、中学课程与大学课程的衔接:
数学根据研究对象的不同,可以并不准确地划分为简单的四个部分:
代数的研究对象是代数结构和运算法则;
几何的研究对象是图形性质和空间关系变化;
分析的研究对象是函数也就是变量关系的性质;
数论的研究对象是整数的性质。
之所以说并不准确,是因为数学学科作为一个门类,各个部分之间彼此联系得非常紧密,各个专门领域之间相互借鉴之处甚多,很难严格地将它们互相区分。例如初中数学中的函数图像,高中数学中的三角函数、解析几何、向量,都是这方面的典型体现。
一般而言,如果不是专门研究数学的大学生,在本科阶段最主要的数学课程是高等数学、线性代数、概率论和数理统计这三门课程,这也是考研数学的主要内容。高等数学就属于分析范畴,线性代数属于代数范畴,概率论和数理统计属于应用数学范畴,但需要分析和代数工具。几何和数论一般只有数学系和少数专业学习。
中学数学知识是学习大学数学知识的基础,这就是学习中学数学的意义所在。下面我来大致梳理一下中学数学知识的联系,以及它们如何构成大学数学的学习基础。
先说代数和分析:
小学我们做的计算题都是数的运算,结果就是一个数,所以学的都是数的运算法则。到了小学高年级,我们开始学到用字母表示数,这叫做代数式。
“代数”是晚清数学家李善兰译介到中国来的,取其“以字代数”之意。代数式是一种语言体系的转换,我们可以通过这种方式构造公式,将运算一般化,得到通用的解法;等到面对具体问题时,在将具体的数代入公式中,就可以解决问题了;而代数研究的目的就是寻求通用的解法。公元820年,波斯数学家花剌子模发表了一份代数学领域的专着,阐述了一次和二次方程的通用解法,明确提出了代数中的一些基本概念,把代数发展成为一门与几何相提并论的独立学科。书名中首次使用了al jabr一词,其含义是“重新整合”,也就是移项与合并同类项。 转译为拉丁语后,变成了 algebra,后来又进入了英语。这就是“代数”一词的词源含义。
引入代数式之后出现了数系的扩充。随着处理的数字越来越复杂,加减乘除的四则运算不能够得到自然数的结果,a-b(a<b,a和b都是整数)引出了负数,a/b(a<b,b≠0,a和b都是整数)引出了分数。所以我们把原来的整数扩展为有理数。这是另一种语言体系的转换,我们使得运算的范围扩大了。
然后我们开始学习整式(字母不做分母的代数式,包括单项式和多项式)的加减和乘法,并且学了整式乘法的逆运算——因式分解,即如何将一个复杂多项式转化成简单多项式的乘法;并且从另一条主线上,我们也学习了整式方程即一元一次方程、二元一次方程和不等式。整式也能够做除法,变成分式,同时也可以做分式方程。但是,在解一元二次方程时遇到了开方问题,这种运算与四则运算不同,得到的结果不一定是有理数,于是我们接受了无理数的存在,并将数系扩充到实数。开方运算有一些特殊的运算法则,例如负数不能开平方之类,这种法则同样代数式同样要遵守,这就是根式。有了这些基础,一元二次方程的问题就能够解决了,我们得到了一元二次方程的通用解法——求根公式。
学了好了基本的运算(加减乘除和开方)和方程以后,引入了函数,引入函数以后,数学的语言体系就又提高了一个新的层次。研究函数和应用函数,是分析的主要任务。函数之重要性,说它是现代数学最重要的概念也不为过。世界上的事物是普遍联系的,但是传统的自然哲学对这种联系的分析都是定性的:比如用火加热,水的温度就会上升;用力越大,弹簧拉得越长;而现代科学则需要对这种联系进行定量分析,找到联系的普遍规律,这就需要用到函数工具。初中物理里的关于加热的公式Q=Cm(T2-T1)、弹簧受力的公式N=k(x-x0)以及高中物理的万有引力公式F=GMm/r2,本质上都是这种借助函数工具进行定量研究的产物。函数是中学数学承上启下的核心知识,初中函数的应用基本是在解方程和不等式上,而高中数学除了一部分几何和统计知识以外,几乎完全建构在函数理论之上。
高中数学首先引入集合语言,引出后文对函数的定义。集合论是现代数学各个分支领域的基石,但是高中水平的数学几乎用不到这个东西,只需要会进行简单的集合运算就可以。然后开始深入研究函数的单调性、奇偶性等一般性质,初等函数(指数函数、对数函数、幂函数、三角函数)的特殊性质,以及一种自变量为正整数,因变量为实数的特殊函数——数列,即实数序列。三角函数引出平面向量,其运算法则反映出的向量代数也是一次数学语言的重大飞跃:我们发现能够运算的不仅是数和代数式,还有有序的数和代数式。然后是不等式,你也许会疑惑学这么复杂的不等式干什么,但到了大学学习真正的数学分析就会知道,不等式证明技巧是学习数学分析必备的本领。这些基础打牢以后,就开始学习极限和导数,高中数学到此就戛然而止了。函数、数列、不等式、导数是高中数学最难的部分,这些也是高等数学基础的基础。高考题的最后一题,基本上就是函数、数列、不等式和导数的综合应用。
到了大学,接续这部分的内容就是大名鼎鼎的高等数学,其中绝大多数内容也就是微积分。数学专业则学习数学分析,这是用更严密的论证体系来学习微积分。不过,无论是高数、数分,研究的函数都比较直观,基本上都是连续函数,或者说黎曼可积函数。而不满足上述条件的实函数,则需要基于集合论、测度论和勒贝格积分的实变函数理论来研究。在另一个方向上,函数的变量也不都是实数,如果变量是复数,则由复变函数或者复分析这门学科来研究。自变量除了数以外,还可以是函数,函数的函数叫做泛函,研究泛函以及无限维空间变换的理论叫做泛函分析,这是比实分析和复分析更加抽象的数学。此外,方程中也可以用微积分,研究如何求解包含微积分的方程的领域叫做微分方程,其中研究包含一元函数微积分的叫常微分方程,研究包含多元函数微积分的叫偏微分方程。分析领域的各个学科都跟理论物理的学习和研究有很大的关联。
高中的平面向量和空间向量,其主要作用是为解三角形和立体几何证明打基础,从应用角度讲算作几何模块更恰当。学到平面向量和空间向量,中学代数的内容就戛然而止了。到了大学,一次方程组被重新拉回视野。因为一次函数的图像是一条直线,所以一次方程组也叫线性方程组,线性代数就是从研究线性方程组的通用解法开始入门。通过运用n元向量、矩阵和行列式,最终得到了线性方程组的通用解法——克莱默法则(但是后面我们会知道,行列式的计算非常复杂,克莱默法则远不如高斯消元法好用,线性代数和高等代数只是拿线性方程组作为引子,引出线性空间这个核心,而这种解线性方程组的任务就交给计算数学专业的数值代数课程了)。与此同时,我们运算的对象也扩展到了向量和矩阵;我们发现,这些运算很相似,都有类似的结构,数学家将其进一步抽象为线性空间,并将研究线性空间的性质和变换作为线性代数的主要任务。而我们直观上能够感受到的三维空间,则是线性空间的一种特殊形式。为了研究这种特殊形式,引入了双线性函数和二次型,得到了内积运算,进而将线性空间特殊化为度量空间,这样线性空间理论就有了能够用于几何研究或解决实际问题的用途。线性空间是最简单的代数学研究对象,除此以外代数学的研究对象还有群、环、域等,研究这些对象及其性质的后续课程叫做抽象代数或者近世代数。初中几何遇到的三等分角、立方倍积和化圆为方三大不可作图问题的证明就需要用到抽象代数的知识。高中选修3-4对称与群、4-2矩阵与变换,分别对应着群论(抽象代数的部分内容)和矩阵代数(线性代数的简单部分),可以课余时间读一读。
然后我们再说说几何:
几何的英文是Geometry,Geo-是“大地”的词根,-metry是“测量”的词根。Geometry直接意思就是“土地测量”。几何起源于古埃及,因为埃及的尼罗河每年的周期性泛滥带来大量肥沃土壤,但是土地的分界也都会被冲毁,因此每年古埃及人都要重新丈量土地,在长期实践中总结的测量技术逐渐发展成为最初的几何学
Ⅲ 数学的含义是什么
数学是开发思维的一门学科,同时也是学技术的基础,如物理,化学,机械,计算机,光电技术都需要数学做基础,数学不学好,学这些时就困难了.所以,数学一定要学好.
学习要安排一个简单可行的计划, 改善学习方法.同时也要适当参加学校的活动,全面发展.
在学习过程中,一定要:多听(听课),多记(记重要的题型结构,记概念,记公式),多看(看书),多做(做作业),多问(不懂就问),多动手(做实验),多复习,多总结.用记课堂笔记的方法集中上课注意力.
其他时间中,一定要保证学习时间,保证各科的学习质量,不能偏科.
每天要保证足够的睡眠(8小时),保证学习效率.
安排适当的自由时间用于与家人和朋友的交往及其他活动.
通过不懈的努力,使成绩一步一步的提高和稳固.对考试尽力, 考试时一定要心细,最后冲刺时,一定要平常心.考试结束后要认真总结,以便于以后更好的学习.
眼下:放下包袱,平时:努力学习.考前:认真备战,考试时:不言放弃,考后:平常心.切记!
成功永远来自于不懈的努力,成功永远属于勤奋的人.祝你成功.
望采纳
Ⅳ 数学是什么意思
数学,一词源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。
Ⅳ 数学的含义
数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择,例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。
数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。
Ⅵ 数学的意义是什么
数学是人类探究世界,研究自然界任何事物的核心。 没有数学就没有物理学,化学,生物学,人类将永远停滞不前。 数学是这个宇宙的骨架
Ⅶ 数学的含义是
数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
Ⅷ 数学的意义是什么
数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题。
掌握数字规律,训练逻辑思维,数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学。
有很多看似枯燥又无理取闹的问题在实际生活中都有意想不到的应用。比如计算机的二进制,比如圆锥曲线的应用,也许你只知道它很麻烦很变态,实际上反光镜、冷却塔的原理都少不了它!
严谨性
严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”。
而这情形在历史上曾出现过许多的例子,在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。
牛顿为了解决问题所作的定义,到了19世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度。