㈠ 解数学难题,有哪些技巧
数学难,对于文科学生来说就更难,但是难未必就是学不会的,未必就考不出好成绩来,要想学好数学,其实很简单,我从教学实践总结以下几点,仅供参考:
1、不要怕数学,很多同学对数学似乎有一种天生的恐惧感,一看到数学,心里就自然而然的产生一种抗拒情绪,影响自己正常的思维。特别是那些应用题,有些同学连题目都没有看,一看题目那么长,就不敢下笔,直接认为自己不会做,白白浪费了大好的机会。须不知,数学的应用题,实际上就是所谓的送分题,很少有真正的难点出现。只要你能够认真的把题目读完,写出数学表达式,分数就做完了一大半。
2、其实数学里面,大部分都是变化,真正要记的也就是那么几个公式。我们完全可以跟玩游戏一样,把他当作游戏来看待。数学公式就是我们手中的武器,题目就是我们的敌人。只是每一种武器都有它自己的特性。不同的敌人,可能要换多种武器而已。我想大家玩游戏时,应该不会看到敌人,还没有动手就逃跑吧。那样你早就死翘翘了,还怎么通关呢?视数学为游戏,游戏而已,有什么大惊小怪的呢!真正碰壁了,换一条路就行了,走迷宫,我们都是高手。一个小小的数学题,就想让我们害怕,可能吗?当然,要想真正的做到视数学为游戏这个地步,还需要一个坚实的基础,这就是数学的基础知识。
3、注意考场答题的技巧,有些同学特别厉害,每个题都一心一意的去做,但问题是他时间严重不够,光选择题就用了差不多一个小时,到后面做大题时,明明知道怎么做,也相信自己能够做出来,可惜已经快交卷了,只能忍痛舍弃。可怜啊,为什么刚开始的时候不注意呢?下面我说说时间的分配,首先,做考场数学题,特别是高考题,一定要注意答题的技巧。刚拿到试卷的时候,不要直接就动手做题(一般老师也不会允许你答题),要好好把握这个时间,把整个试卷看一下(主要是看后面的几个大题目),看一下有没有自己曾经做过的题目,或者是自己曾经见过那个题型,看一下有没有自己能够很快就可以做完的题目,看完之后,首先就把这些题目做出来。然后再做选择题。整个考场做题的步骤是这样的:曾经做过的题——选择题——大题——填空题。为什么把填空题放在最后呢,因为填空题分值较小,而且跟计算题区别不大,要费很大心思,它又不像选择题,可以猜答案,所以一般放在最后。其次,做考场题的时候,一定要注意拿分。也就是说,做的一切都是为了分数。题目不会做不要紧,有分拿就OK了。所以做题时,特别是在做后面那些计算题的时候,要注意拿分的技巧。第一个要注意的就是解题格式。因为改卷是按步骤给分的,所以,无论你那个题目会不会做,至少你要有一个题设过程,然后再写出一个数学式子(如果你数学式子写不出来,起码用中文写一个表达式是没有问题的吧)。至于计算,如果你实在不会,就算了,不要在这里浪费太多的时间,后面还有很多题目等着你呢!
4、注意做题技巧,这里讲的做题技巧,主要是针对选择题和填空题而言。这类题目,要的只是一个答案,至于用什么方法,没有任何要求。我们做的时候,没有必要象做计算题一样,老老实实的去计算。只要能够得到答案,就算是猜的,也没有人能够管你。所以这一类题目,要点就是一个:猜!
以上几点是我个人认为的学好数学的方法,当然,最主要的还是基本功一定要扎实。
㈡ 解决数学难题的好方法
解决数学难题最好的方法就是掌握数学的基础知识和概念,然后多做练习题,在实践练习的过程当中,可以更好的帮助我们锻炼逻辑思维能力,这样对于解决数学难题效果是最好的。
此外在数学题目解题的过程当中,遇到不懂的题目或者概念要及时向老师请教,认真详细的听老师的讲解,把详细的内容理解透彻,这样才可以更好的解答数学题目,并且可以锻炼我们的分析能力,解题能力,从而数学的学习会变得更优秀。
有的同学感到,老师讲过的,自己已经听得明明白白了,但是,为什么自己一做题就困难重重了呢?其原因在于,同学们对教师所讲的内容的理解,还没能达到主要的学习效果。
每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看,能否坚持如此,常常是好学生与差学生的最大区别
,尤其练习题不太匹配时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比学习,如果自己又不注意对此落实,那么学习的效果就会差别很大。
同学们一定要明确,现在正做着的题,一定不是考试的题目,而是要运用现在正做着的题目的解题思路与方法,因此,要把自己做过的每道题加以反思,总结一下自己的收获。
有的同学认为,要想学好数学,只要多做题,功到自然成,其实不然,一般说做的题太少,很多熟能生巧的问题就会无从谈起,因此,应该适当地多做题,并且在做题目的过程当中学会反思和总结,这样数学的知识掌握才会更全面,数学思维的锻炼也会更好。
进行章节总结是非常重要的,学习时是学生自主做笔记,做得细致深刻完整,自己给自己做总结,这样我们学习的效果才会理想,而且在学习的过程当中做笔记和做总结,能够加深我们对知识的印象,让我们对知识的理解更好,也能够真正做到理解题目,从而高效率解决所有数学。
数学的学习就是一个非常专业的过程,我们在学习的过程当中一定要有信心,要坚定认真的去学习,不要随意遇到困难就放弃,这样才能够更好的达到良好的学习效果,也能够培养我们坚持学习的精神,对于解决数学难题,会有非常好的帮助。
㈢ 不会做的数学题如何解决
可能大家都遇到过拿到一个数学题不会做,无从下手的情况;也会遇到有些知识存在记不牢,记牢不会用的问题。下面我就跟大家谈谈我对于数理化生解题的理解和一些数学技巧。
1、代入法,这列方法往往是给定了一些条件,比如a大于等于0,小于等于1。b大于等于1,小于等于2.这些给定了一些特殊的条件,然后让你求一个ab组合在一起的一些式子,可能会很复杂。但是如果是选择题,你可以取a=0.5,b=1.5试一试。还有就是可以把选项里的答案带到题目中的式子来计算。
2、区间法,这类方法也成为排除法,靠着大概计算出的数据或者猜一些数据。比如一个题目里给了几个角度,30°,90°。很明显,答案里就肯定是90±30度,120加减30度。或者一些与30,60,90度有关的答案
3、坐标法,如果做的一些图形题完全找不到思路,第一可以用比例法,第二可以用坐标法,不用管什么三角函数,直接找到两点坐标,直接带入高中函数求角度(cos公式)求垂直,求长度,相切相离公式。直接直捣黄龙,不用一点点找角度做什么麻烦的事
4、比例法,这个方法很简单也很无赖。如果遇到一个图形题,首先把已知的标上去,未知的用量角器量也要量出来,之后就是见证奇迹的时刻!!!尺子量出两条实线的比例关系,然后通过已知的一边,通过比例大概估算求得那个边长
5、函数法,这个就是要把一些计算转化为函数,首先带入答案,之后移项,把方程一边变成零,然后就可以把函数的表达式大概画出来,看与零点有没有唯一焦点,这样就可以大概判断答案,或者找最接近零点的答案!
6、经验法:在排序或者有规律的题目也使用。首先比如求三角形面积。你看答案里a:12,b,13,c:6,d:11.第一,12,13,11明显是拼凑的错误答案。第二肯定有陷阱是三角形面积忘记除以2,所以c的答案正确率高。还有一些答案,前几个是重复的,就像下面的图一样,不会就选重复答案多的那几个!1,2重复答案为两个,c,d最可能。
7、如果,实在找不到任何方法,那就看答案,有共同公约数的一般是有正确答案。一般那些和其他三项不会有任何相似的答案,一般就是错的。可以直接排除,找答案其实就是找不同。看参透作者的想法,考虑题目想设置什么陷阱,去排除一些无关的答案。
㈣ 如何学好数学 解决数学问题的5个技巧
1、实践,实践和更多实践。通过阅读和聆听来学习数学是不可能的。要学习数学,你必须卷起袖子,实际上解决一些问题。 练习回答数学问题越多越好。每个问题都有自己的特点,在解决考试之前以多种方式解决问题非常重要。没有逃避这个现实,要想在数学考试中做得好,你需要事先解决很多数学问题。
2、查看错误。当您练习这些问题时,为每个解决方案完成整个过程非常重要。如果您犯了任何错误,您应该检查它们并了解解决问题的技巧会让您失望。了解您如何处理问题以及出错的地方是一种变得更强大并避免将来出现同样错误的好方法。
3、掌握关键概念。不要试图记住这些过程。这会适得其反。从长远来看,重点是理解所涉及的过程和逻辑,这是更好的和有益的。这将有助于您了解将来如何处理此类问题。请记住,数学是一门连续的主题,因此在继续研究基于理解基础知识的其他更复杂的解决方案之前,必须牢固地理解支撑数学主题的关键概念。
4、理解你的怀疑。有时你可能会遇到困难,试图解决部分数学问题并发现难以进入下一阶段。对于许多学生来说,跳过这个问题并继续下一个问题是很常见的。你应该避免这样做,而是花时间试图理解解决问题的过程。一旦掌握了对初始问题的理解,就可以将其作为踏脚石来进入问题的其余部分。记住:数学需要时间和耐心才能掌握。与朋友一起学习是个好主意,在尝试解决复杂问题时,您可以咨询并反省意见。
5、创建一个分心的学习环境。数学是一门需要更多集中的学科。在求解几何,代数或三角学中的复杂方程或问题时,适当的学习环境和无干扰区域可能是决定因素!学习音乐可以营造轻松的氛围,激发信息的流动。拥有合适的背景音乐可以营造最大限度的环境。当然,你应该避开Pitbull和Eminem,在这些时代,乐器音乐是最好的。
㈤ 解决数学问题的常见思路方法有哪些
1、公式法:将公式直接运用到问题中,常用在代数问题中.解决该类问题必须记好数学公式.
2、逆推倒想法:由问题的结论推理到问题中的条件,常用在几何问题中.解决该类问题必须掌握好几何中的定义、公理、定理和推论等.
3、数形结合法:将问题转化成图形进行解决,常用在代数中的应用题中.
㈥ 做数学题时,尤其是考试的时候,遇到无从下手的题目该怎么办
先放一放,寻找试卷中,较为简单的题目。完成多个题目的填写后,再返回完成留下来的空白题目。
多位学生都曾遇到过数学难题,他们无法在第一时间找到解决数学题的方法,更无法获得解决题目的步骤。长时间集中于同一个题目中,只会浪费大量的做题时间。与其纠结于一个题目,倒不如尝试解开其他题目。
学生时代,老师都曾告诉学生最重要的解题方法。并非所有的题目的解题方法十分简单,部分题目中出现太多的迷惑性数据或者问题。我们遇到解不出的问题时,首先应该做到的就是先放一放。不要让自己长时间沉浸在做不出题的尴尬情绪中,当我们逐步解开其他难题后,信心大增,也许会寻找到题目中的迷惑型线索。
总的来说,数学的知识点融会贯通,方法多种多样,并不意味着一道题目只适用于同一种解题方法。此外,不要出现紧张的情绪,提高心理承受能力,帮助学生更快的解决问题。遇到不会的题目,先放到一边,或许你可以在某一个时间点出现做题的想法。
㈦ 解数学题一般有哪些步骤
做任何事情,都有一个从准备、进行到完成的过程,解数学题也是如此。一般来说,解数学题有下列四个步骤:
1.审题。即通过仔细读题来弄清楚:这是一道什么样的题?题的结构如何?题中的已知条件是什么?题中的问题或要求是什么等等。
2.分析。即在审题的基础上,弄清楚条件与条件以及条件与问题之间的联系或关系,并根据要求分析解题途径,探求解题方法,从而实现由已知向未知的转化。分析的基本思路一是回忆,二是推想。如回忆有关的定义、定律、性质、法则、公式,联想有关的典型问题的解法和注意事项等等,以确定如何解题。推想则是对解题途径的推测和尝试。
3.叙述。即做好上述两项工作以后,把解题付诸实践,也就是按照解题要求写出解题过程。这一步是同学们经常做的工作。
4.检验。即对解题过程进行复核、验算。如审题是否失误?公式是否用错?运算是否正确?格式是否符合要求等等。
同学们,你在解题时是按照上述步骤进行的吗?
四则混合运算的顺序,为什么要规定“先乘除,后加减”。
对于运算顺序的这一规定,是基于以下两个原因:一是在实际计算中需要先乘除后加减的问题比需要先加减后乘除的问题多,这一规定可大大减少使用括号的麻烦,使运算简便。二是从数学发展史来看,加减是数量变化的低级形式,乘除是高一级的形式。“乘法是递加同一数的简便算法,除法是递减同一数的简便算法”。因而乘除比加减简便、迅速、计算效率高,所以就产生了尽量运用乘除的规定。
㈧ 数学解决问题的方法
总的来说,解决数学问题的方法有两种:综合法和分析法。综合法就是利用已有的条件和结论一步一步的推导出想要的结论,是一种直接解决问题的方法;分析法就是由要得到的结论倒推出必须的条件,然后再将推出的条件作为结论,继续倒推必要的条件……如此循环,直到最后推出所要的条件是已知的为止,此时问题已基本上解决了,只需按原路回推即可解决问题,这是一种间接解决问题的方法,但却行之有效。而实际应用中,往往两者结合使用。其他的那些解题方法,像转化、假设、替换、倒推等都只是这两种方法的细化而已。
㈨ 数学解决问题的一般步骤
第一,从问题出发。解决数学问题,首先要从理解数学问题开始,没有正确的理解就没有正确的解答。所以说要从问题出发,分析问题的基本条件,基本要求,梳理基本脉络,形成基本观点。这就要求学生要特别注重语言的训练,包括听说读写等能力的训练,以实现对题目的充分理解。
第二,从规律出发。数学问题都是有一定规律可遵循的,发现了规律可以事半功倍,发现不了规律只能一头雾水。如何发现规律?首先要认识规律。数学的规律都是隐藏在各类问题之下的,一般很难发现。这就需要学生日常养成专心听讲的良好习惯,因为这些规律性认识都是经过老师认真备课,精心组织耐心讲授出来的。课时要会做笔记,做好笔记,课下做好复习,认识,理解规律,最好能够自主的去发现规律总结规律。
第三,从结果出发。所谓解决数学问题,在小学和中学阶段就是指解决数学题目。数学题目有一个特点,就是一定有一个疑问,有一个答案。为了解答,我们需要认真分析问题,即所谓的有的放矢。从结果出发反推问题所在,从结果中发现数学冲突和矛盾,在结果中理清解题思路。
第四,从逻辑关系出发。解决数学问题的实质是逻辑关系的理顺,学生需要从题目中找到各种数量,变量,并建立起这些量之间合理的逻辑关系和数学解释。罗辑思维能力提升的方法很多,主要是专项逻辑训练,数字规律认识,图形类型归纳,数形结合问题等等。在具体的解题过程中,我们需要抓住变量,还要抓住不变量,通过这些量之间的变化关系得出题意中的逻辑关系,进而最终求的结果。
㈩ 有什么办法解决数学问题
找老师、同学教你怎么做,或者找一些网课学习、培训机构补课都可以呢