1. 圆的切线怎么证明了
证切线有三种办法
①与圆只有一个交点的直线(不太常用)
②有已知交点,连半径,证垂直(根据切线判定定理)
③无已知交点,作垂直,证半径(根据直线与圆的位置关系,d=r)
2. 如何证明圆的切线
证明圆的切线
①可用切线的定义:直线和圆有唯一的公共点。
②可用圆心到直线的距离等于半径时,这样的直线是圆的切线。
③过半径的外端且与这条半径垂直的直线是圆的切线。
后两种方法比较常用。
3. 初中数学证明切线的三种方法是什么
(1)切线的定义。
(2)如果圆心到一条直线的距离等于圆的半径,那么这条直线是圆的切线。
(3)若一条直线过半径的外端,且垂直于这条半径,那么这条直线是圆的切线。
切线的定义
切线指的是一条刚好触碰到曲线上某一点的直线。圆的切线的判定方法有:和圆只有一个公共点的直线是圆的切线;和圆心的距离等于圆的半径的直线是圆的切线;经过半径的外端并且垂直于这条半径的直线是圆的切线。
切线的主要性质
(1)切线和圆只有一个公共点。
(2)切线和圆心的距离等于圆的半径。
(3)切线垂直于经过切点的半径。
(4)经过圆心垂直于切线的直线必过切点。
(5)经过切点亚直于切线的直线必过圆心。
(6)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
4. 证明圆的切线的方法有几种
一种:连圆心证垂直。
已知条件中直线与圆若有公共点,且存在连接公共点的半径,可直接根据“经过直径的一端,并且垂直于这条直径的直线是圆的切线”来证明.口诀是“见半径,证垂直”。
已知条件若没有给出了直线和圆的公共点,则过圆心向这条直线引垂线,根据“到圆心的距离等于半径的直线是圆的切线”这个定理来证明,口诀是“作垂直,证半径”。
主要性质:
(1)切线和圆只有一个公共点;
(2)切线和圆心的距离等于圆的半径;
(3)切线垂直于经过切点的半径;
(4)经过圆心垂直于切线的直线必过切点;
(5)经过切点垂直于切线的直线必过圆心;
(6)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
以上内容参考:网络-切线
5. 圆切线定理是什么怎么证明
切线的判定和性质
切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
几何语言:∵l ⊥OA,点A在⊙O上
∴直线l是⊙O的切线(切线判定定理)
切线的性质定理 圆的切线垂直于经过切点半径
几何语言:∵OA是⊙O的半径,直线l切⊙O于点A
∴l ⊥OA(切线性质定理)
推论1 经过圆心且垂直于切线的直径必经过切点
推论2 经过切点且垂直于切线的直线必经过圆心
切线长定理
定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
几何语言:∵弦PB、PD切⊙O于A、C两点
∴PA=PC,∠APO=∠CPO(切线长定理)
弦切角
弦切角定理 弦切角等于它所夹的弧对的圆周角
几何语言:∵∠BCN所夹的是 ,∠A所对的是
∴∠BCN=∠A
推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
几何语言:∵∠BCN所夹的是 ,∠ACM所对的是 , =
∴∠BCN=∠ACM
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
4.弦切角概念:顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:
(1)顶点在圆上,即角的顶点是圆的一条切线的切点;
(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;
(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线.
它们是判断一个角是否为弦切角的标准,三者缺一不可,比如下图中 均不是弦切角.
(4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.
弦切角定理:弦切角等于它所夹的孤对的圆周角.它是圆中证明角相等的重要定理之一.
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.
推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.
6. 怎么证明切线
利用切线的性质定理以及推论,切线的判定定理,切线长定理进行证明。
1.
切线的性质定理::圆的切线垂直于经过切点的半径
2.
切线的性质定理的推论1:
经过圆心且垂直于切线的直线必经过切点
3.
切线的性质定理的推论2:经过切点且垂直于切线的直线必经过圆心
4.
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
5.
切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
7. 如何证明圆的切线
圆切线的证明,一般有两种情况:
1、已知直线与圆的交点,则连接它与圆心,然后证明垂直即可。
2、已知中,没有直线与圆的公共点,则边圆心作直线的垂线段,再证明线段长等于半径。
8. 怎样证明一条直线是圆的切线
圆的切线性质有:圆的切线垂直于过切点的半径;过圆心垂直于切线的直线必过切点;过圆外一点引圆的两条切线,切线长相等.
判断一条直线是圆的切线的方法有:若直线与圆有唯一的公共点,则此直线为圆的切线;圆心到直线的距离等于圆的半径,则此直线为圆的切线;过半径的外端点与半径垂直的直线为圆的切线.
9. 怎样证明一条直线是圆的切线
1、连半径,证垂直。
2、作垂线,证半径。
若直线L过⊙O上某一点A,证明L是⊙O的切线,只需连OA,证明OA⊥L就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直。
相关信息:
圆的切线垂直于过其切点的半径;经过半径的非圆心一端,并且垂直于这条半径的直线,就是这个圆的一条切线。一直线若与一圆有交点,且连接交点与圆心的直线与该直线垂直,那么这条直线就是圆的切线。
圆的切线垂直于经过切点的半径。
推论1:经过圆心且垂直于切线的直线必经过切点。
推论2:经过切点且垂直于切线的直线必经过圆心。