㈠ 两位数乘两位的总结怎么写四年级上册
三位数乘两位数是整数运算的中关于乘法学习的最后一部分知识,学生掌握了三位数乘两位数笔算方法后,就能顺利迁移多位数乘法计算,所以 这一单元的学习具有一定的总结性和概括性。
三年级学习《两位数乘两位数》时,我们就在两位数乘两位数的基础上学习了三位数乘两位数,因为三位数乘两位数笔算方法跟两位数乘两位数笔算方法基本相同,学生理解了先用第二个因数(学生是说用下面这个因数)个位上的数去乘第一个因数的个位上的数,再乘十位上的数;再用第二个因数十位上的数去分别乘第一个因数个位和十位上的数,当一个因数是三位数时,就很顺利过渡到接着还要和第一个因数百位上的数相乘,我记得当时学把三位数乘两位数和两位数乘两位数同时教学,效果还很好,不仅会算,还发现写竖式时把数位多的数写在竖式的上面计算起来比较简便。
根据我班学生学习的实际情况,结合本单元的教学目标以及本单元知识在整数乘法运算中的地位,本单元我们做到:
一、巩固计算方法,提高计算速度。计算教学本身比较枯燥,学生常常感觉是会算,但很容易出错。既然会算,就不愿意算,觉得没挑战性,针对学生这以心理特点,我们课堂上采取各种形式的竞赛活动让学生积极参与计算练习:比如看谁先算完(四道题写在黑板上,先算完先去黑板上算;在规定时间内看谁能算完);老师口头报题,先算完把题和得数写在黑板上......小学生竞争意识很强,只要是比赛,积极性都会很高,在这种氛围下注意力也会高度集中。另外,为了达到一定的计算量,又不至于使学生厌倦,我们把计算练习分散到每一天,那就是在每天下午上课前(学生还没到齐,等待上课的那几分钟)会让学生用4分钟时间计算四道题,做完后就休息,等90%的学生完成了,小老师会让四位平时计算能力稍差的学生上黑板上计算。别小看这四分钟,每天四分钟不算什么,但每天四道题累积起来就是每周20道,每月大约就有100道,这样学生感觉很轻松,而且还养成了一种每天练习的好习惯。
二、估算要与生活相联系。三年年多的数学学习,学生已经体会到估算在生活中的作用,也积累了一些估算的方法,虽然估算没有确定的方法,但把一个数看成整十的、整百的.....这样算起来比较方便,在这一点上学生都达成了共识,学习了用四舍五入方法求近似数后,学生都习惯用这种方法找到整十、整百数。但这一单元的估算主要是让学生理解估算除了要计算方便、接近准确值,还要结合生活实际,那就是有时候要估大,有时候要估小,不能机械用“四舍五入”法来求近似数。什么时候该估大,什么时候该估小,学生还难以作出决策,不过估计外出旅游应该带多少钱、装修房子买多少地板砖这些应该估大他们是理解的,其他生活情景还是模棱两可。
三、自主探索级的变化规律。这一单元系统探索因数的变化引起积的变化,在教学中,学生在老师的引导下,以一个因数不变,另一个因数乘几,积也乘积;;一个因数不变,另一个因数除几,积也除以几这两个变化规律为基础,探索出(1)一个因数乘几,另一个除以相同的数,积不变;(2)两个因数同时乘,积如何变化积;(3)两个因数同时除,积如何变化;(4)一个因数乘几,另一个因数除以几(乘和除的数不一样),积如何变化。
四、通过探索运算规律,感受数学神秘。这单元我们探索两位数乘11,三位数乘11,一个数乘101等,使学生在观察、计算、验证、应用等活动中,感受到数学的神奇与魅力,使学生乐此不疲参与到探究活动中去。
本单元的学习,学生是轻松的,愉快的,但单元测验情况不是很理想,90分以上29人,80到89分40人,80分以下19人。事后,我和学生进行详细分析,他们一致认为,问题就出现在他们感觉很容易,没当回事。
㈡ 《两位数乘两位数》教学反思
作为一名优秀的教师,我们要有很强的课堂教学能力,教学反思能很好的记录下我们的课堂经验,那么应当如何写教学反思呢?下面是我整理的《两位数乘两位数》教学反思(通用5篇),欢迎阅读,希望大家能够喜欢。
两位数乘两位数笔算乘法是在学生能够较熟练的口算整十、整百数乘两位数,并且掌握了多位数乘一位数的笔算方法的基础上进行教学的。本课的重点是掌握两位数乘两位数的笔算算理。关键在于学生能掌握好乘的顺序以及两个积的数位。
教学中,我从学校购新书入手,再现了学生熟悉的情景,激发了学生的学习兴趣,同时,把计算设置在学生熟悉的具体情景之中,激活了学生原有的知识与经验,使学生愿意去主动探索知识。例:24×12,让学生以探究、活跃、高昂的精神状态参与学习过程。
从课堂反馈来看,效果较好。在探索计算方法时,我让学生独立尝试计算,有的孩子用口算的方法,有的孩子用竖式的方法。其中不少用竖式的孩子是直接写出得数而没有计算过程的,说明这些孩子还没能很好的理解算理。此时,我请了几位孩子上台书写自己的方法,先请口算的孩子说了自己的想法,再请笔算正确的孩子说他的计算过程,同时,我注意引导学生进行观察表达,让学生们理解笔算的计算过程。最后在比较台上错误的笔算存在的问题,让学生加深对算理的理解,明白算理的重要性和必要性。两位数乘两位数的笔算对于学生而言是较难理解的,计算时需要进行3层计算。学生还未能熟练掌握时,往往会出现运算第2层时把算乘几十当成算乘几,或者将因数弄混淆导致出错。为了避免这一问题,在学生书写竖式时,我要求孩子们将算理一并书写在算式的旁边,便于孩子记住自己该算哪一步,便于孩子们在思维混淆时能理清运算的顺序,在检查时便于发现错误。
在教学中我体会到,对这一知识的教学千万不能急,不能光看学生计算出的结果正确与否,而应关注学生是否理解了算理。看似简单的计算,实际对初次学习的孩子来说是挺困难的事情。在教学中应多观察多思考学生出错的原因帮助其从对症下药。同时,加强对算理的理解是学生熟练掌握计算方法的关键。
今天继续用钉钉直播讲授数学课,本节课我讲的三年级下册第四单元的《两位数乘两位数的笔算》一课,它是在学生学习了多位数乘一位数的基础上进行教学的,也是整数乘法学习的重要阶段,需要让孩子对整数乘法的算理和算法进行更深层次的认识。
课上,我通过复习多位数乘一位数,让学生说说笔算方法,唤起学生的已有知识,把新旧知识的衔接点找准,为学生能更好地学习新知做铺垫。接着从王老师买书的情境引出算式14×12,从而出示本节课的课题:两位数乘两位数。
在探究两位数乘两位数的笔算方法时,我让学生通过点子图的形式,明确可以把其中第二个乘数分成(3×4)或(10+2),首先知道了计算结果是168;接着一起探究两位数乘两位数的笔算方法:我让学生先根据独立尝试解决列竖式计算,学生在尝试解题的过程中难免会出现错误;接着我一步一步出示正确的竖式书写方式,并通过点子图让学生明白每一步的意义时,特别强调14×2表示2套书的本数;14×10表示10套书的本数;28+140=168表示12套书的本数。同时明确了竖式书写要对齐数位,十位与第一个乘数相乘的积个位的“0”可以省略的道理。学生结合现实的情境,理解了两位数乘两位数的算理,使抽象的算理具体化,更便于理解和接受。
接着我通过与多位数乘一位数的竖式计算的对比,让学生发现相同之处和不同的地方,从而总结出两位数乘两位数(不进位)的笔算方法。在巩固拓展环节,我先从笔算方法的掌握先着手,让学生通过计算、展示做一做的题目,让大家明确竖式中的每一步得数是怎么来的,进一步理解算理,掌握计算方法。最后让学生去所学的知识去判断纠错,解决生活中的实际问题,把所学的知识应用于生活,提高学生解决问题的能力。
整节课我把计算教学与解决实际问题相结合,使课堂内容充满了情趣,有了色彩,既解决了计算问题,又提高了解决实际问题的能力,一举两得。但本节课也有一些不足之处:由于网络授课的原因,学生的列竖式计算的情况没有全员关注,上课时间只有30分钟,导致解决问题的练习比较草率。
《两位数乘两位数是义务教育课程标准实验教科书第七册80~81页的内容。
教学的重点是使学生掌握两位数乘两位数的笔算方法,理解第二个因数十位上的数乘第二个因数得多少个“十”,并能正确计算两位数乘两位数。
教学的难点是解决乘的顺序和第二部分积的书写位置问题。
片段一
师:文具店新购进一批圆珠笔,一盒是24支。请每个同学都猜一猜,这样的圆珠笔12盒大概有多少支?并说说你是怎样猜的?
(学生猜测的积极性很高,但是五花八门,从八十左右到四百多不等。)
师:看来大家猜想的结果很不一致,那么用什么办法可以判断哪种结果最准确呢?
(有几个学生在下面嘀咕,算算不就知道了。)
师:(老师马上接过话头)这几位同学说的很好,算算就知道了。下面请每位同学把自己猜测的结果写在纸上,然后独立地、用尽可能多的方法算算12盒这样的圆珠笔到底有多少支?看看自己猜的是否准确。
(老师布置任务后,很多学生依然带着期待的眼光看着老师。当老师问,你们为什么不动手计算时,听到的回答是“两位数乘两位数还没有学呢?”)
师:对,我们以前是没学,不过老师相信你们一定会想出许多方法。
(在老师的鼓励下,全班学生都开始了算法的思考,教师则分组进行指导。)
(学生经过15分钟的独立思考后,教师回到讲台。)
师:老师刚才发现,许多同学已经有了不同的研究成果,如果相互交流一下就可以学到不同的方法。在同学们相互交流之前,先整理一下自己的研究成果,想想你准备讲哪几点?说哪几句话?
(准备20分钟后,开始小组内交流,然后请代表报告本组的研究成果,进行小组之间的交流。)
通过交流,全班一共发现了近十种解法:
(1)24+24+……+24=288(12个24相加)
(2)12+12+……+12=288(24个12相加)
(3)24×2×6=288
(4)12×3×8=288
(5)24×3×4=288
(6)24×10+24×2=288
(7)竖式计算
(8)24×20—24×8=288
片段二
师:同学们已经探索出十几种算法,下面我们比较一下这些方法的优缺点。
师生交流后,得出以下几种结论:
1、用加法计算,容易理解,但计算麻烦,容易出错。
2、把其中一个两位数转化成两个一位数的积,具有局限性,不通用。(如:24×13等)
3、把“两位数乘两位数”转化成两个积的和(如:24×10+24×2=288),具有一般性,但书写不简单。
二、归纳法则。
在比较各种算法特点的基础上,师生共同研究两位数乘两位数的笔算算法,归纳法出笔算法则。
三、巩固练习。(略)
[案例反思]
如何搭建“脚手架”?
所谓“脚手架”是指学生在学习新知识之前所必备的相关认知经验,是学生汲取新知识的基础。由于学生已有的认知经验会直接影响新知识的建构。因此教学中一直很注重“脚手架”的搭建。
在传统的教学中,“脚手架”往往是以“复习铺垫”的形式存在,搭建“脚手架“的任务也主要由教师承担。例如,在两位数乘两位数的教学中,多数教师都是先让学生做一些类似24×6、24×10的两位数乘一位数或整十数的题目进行复习铺垫,然后再引出两位数乘两位数的乘法算式。教师设计的这种“复习铺垫”可能会强化了新旧知识之间的联系,使教学过程比较顺利。但同时也人为地降低了学习的难度,降低了学习的挑战性。久而久之,学生便于工作只会习惯性地沿着教师指定的思路走,失去了主动探究的欲望,限制了创新思维的发展。
我在教学中,则把搭建“脚手架”的机会还给了学生。在开门见山的提出问题以后,先让学生猜结果、说理由,然后鼓励学生用计算的方法来验证自己的猜想。
首先,搭建“脚手架”要引导学生自主提取信息。
随着信息时代的到来,社会越来越需要能处理信息的人。“让学生在自身原有的知识体系中提取对对解决当前问题有用的信息,是一种很重要的能力。”教师不应当是有用信息的提供者,而应当是学生主动提取有用信息的促进者。在“两位数乘两位数”的教学中,我没有进行复习铺垫,而是直接提出问题。当学生提出“两位数乘两位数还没有学”的问题时,又及时地对学生进行鼓励:“对,我们以前是没学,不过老师相信你们一定会想出许多方法。”面对全新的、富有挑战性的问题情境和教师真诚的鼓励,学生必定会使出浑身解数,寻求问题的答案,必定会激活学生认知结构中的有用信息,从而提高了学生根据目标需要检索和提取有用信息的能力,同时也在为学生的发展奠基。
其次,搭建“脚手架”要蕴含数学思想方法。
“如果知识背后没有方法,知识只能是一种沉重的负担;如果方法背后没有思想,方法只不过是一种笨拙的`工具”。(钱阳辉)自新课程提出“三维目标”以来,数学教学扭转了对“知识目标”的单一追求,增加了数学教学中思想方法的含量。
如果说传统教学过于注重了“知识技能脚手架”的搭建,我则更加倾向于引导学生搭建“方法策略的脚手架”。学生从“五花八门”的猜想,到“灵活多样”的验证方法,从对验证方法的优化,到归纳出笔算法则。学生收获最多的不是知识,而是研究问题的方法,是在学习过程中“再创造”的体验。在传授知识的同时,进一步引导学生领会数学方法、感悟数学思想,从而使学生学会数学的思维。
本节“两位数乘两位数进位”为计算法则教学课,我按照传统的模式:导入,新授,巩固练习,课堂小结,布置作业设计的。
良好的导入能起到先声夺人的作用,教材为我们提供了下围棋这一情节,就是针对新课中的“围棋”我设置了“专心致志”的故事而过渡到新课。巧妙地将“棋盘上一共有多少个交叉点?”的问题融于故事情节之中,使单纯的数学教学变得情趣盎然。让学生知道数学来源于生活。但是复习的时间过长,导致后面的本节课的亮点部分生生互动环节“蜜蜂采蜜”没有实施。教学是一门遗憾的艺术,在新课练习过程中有部分同学做错。原因是两个数的和没有加反而也用乘法。针对错误指出错误让全班的同学引以为戒。避免这种错误再次发生。
精心设计的一节课并没有上出我理想中的效果。在实施过程中遇到了这样那样的失误。分析如下:
(1)导入过长。导入过长直接影响后面的教学。
(2)复习注重梯度练习。学生的接受能力不一样,练习多设置些有梯度性的题便于不同层次的学生消化。
(3)时间分配上要调整。
(4)尽量避免口误,注重教学中的每一个细节。
虽然存在种种遗憾,但是我会一如既往的努力下去,争取上好每一堂课,少上遗憾的课。在遗憾中反思,在遗憾中完善,在遗憾中成长。让学生学到学好更多的知识!
二两位数乘两位数的笔算乘法,是在学生掌握了两位数乘一位数的笔算方法、两位数乘整十数的口算方法的基础上进行教学的,学生虽然在乘法进位的方法、笔算的顺序和数位的对齐方面已有了一定基础,但计算作为最根本的基础知识和基本技能,应该是我们教学的重点。所以本节课把教学目标定位在:使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。同时培养学生用旧知解决新知的学习方法及善于思考的学习品质,养成认真计算的学习习惯,其中教学重难点仍是理解乘数是两位数笔算乘法的算理。
对整堂课的教学设计是创设一个具体的情境激发学生学习的兴趣,围绕要解决的中心问题展开自主探索,在教学中教师心引领者的角色带领学生理清:
1、掌握乘的顺序。
2、理解用第二个因数十位上的数乘第一个因数得多少个十,乘得的数的末位要和因数的十位对齐。
在实际教学时,估计有相当一部分学生能算出结果是多少,所以本课基本思路是从认知冲突到新知尝试经过交流理解达到巩固掌握,同时也提倡算法多样化。
实际教学中,在组织全班讨论、交流各类方法,提出自己的疑问一起解决。在教学过程中学生出现多种计算方法,有用加的方法进行分拆,有拆因数法,有坚式计算。所以我主要是通过让学生在复习、尝试、交流的过程中,使学生能够将新知与原有的知识进行沟通与交流,从而达到学习的目的。
在整堂课中,我尊重学生的认知基础,合理的运用学生生成的问题资源,让学生在展示个性思维的时候,暴露自己真实的想法,通过学生间的相互交流、相互启发,相互的反思中的想法与口算方法的算理巧妙的合并到一起,根据自己原有的知识经验,把现在的想法在竖式中如何表示出来,在学生对新生事物的不断完善中,关注到了学生的错误,关注了学生的情感,对于+的省略,它是一个习惯问题;他们在相互交流、自我反思中不仅突破了建构了知识的障碍,让学生自己感悟错误所在,从而牢固建构建构了两位数乘两位数的笔算坚式格式,使我们的课堂教学高潮层出不断。有人说,创造不在于结果,而在于过程。课堂中的问题信息其价值并不在于问题本身,而在于背后的创造过程,实现了问题背后的创新价值,才真正使课堂中的问题变成重要的课程资源。
新理念下的课堂教学是开放的,动态的,当学生活起来、动起来的时候,我们必须学会倾听他们之所想,组织他们交流思维的火花,在师生交往、生与生积极互动、共同发展的动态过程。学生带着自己的知识、经验、思考,参与课堂教学。正是有了他们的参与,才使我们的课堂异彩纷呈,充满了未知的、不确定的因素。因此在课堂教学中应该突破预设的囚笼,变预设为生成,善于捕捉动态生成性资源,使之加以利用,让课堂教学涌动活力。当然捕捉这种闪烁不定的教学资源,教师要有妙手,能及时抓取,促成课堂教学的动态生成,而富有动态生成的课堂正是我们课堂教学改革要努力达到的境界。同时教师的教学必须是在传授知识的同时,进一步引导学生领会数学方法、感悟数学思想,从而使学生学会数学的思维,达到教人以渔的目的。
㈢ 三年级数学两位数乘两位数我学会了吗教案
三年级数学下册《两位数乘两位数》备课教案
一、教学内容
1、一个因数是整十数的口算。
2、两位数乘两位数的笔算、估算。
3、混合运算。
二、教学目标
1、学会整十数乘整十数和两位数乘整十数的口算方法,并能正确口算;学会两位数乘两位数笔算方法,并能正确计算;能结合具体情境进行两位数乘两位数的估算和简单乘除混合运算。
2、经历探索两位数乘两位数计算方法的过程,培养初步独立思考和探索问题的意识;体验解决问题策略的多样性。
3、在经历探索算法的过程中,感受乘法运算在生活中的应用,并有成功的体验。
三、素材解读
1、素材的选取。以美丽的街景为题材,体现了城市的繁荣、家乡的美丽。
2、情境串。本单元共有4个信息窗,依次是:美丽的街灯——漂亮的街心花坛——壮丽的观光塔——多彩的街道夜景。
四、知识分析
1、知识基础。有三个:一是表内乘法;二是百以内数的加法口算;三是两、三位数乘一位数。
2、教材的地位。
(1)两位数乘两位数是一种完全乘法(一位数乘一位数是表内乘法,两、三位数乘一位数叫不完全乘法)。这是乘法教学中最重要的部分。
(2)是今后学习三位数乘两位数的基础;
(3)是今后学习四则混合运算和解决问题的基础;
(4)是今后学习小数乘法的基础。
3、知识构成。这是一个比较大的单元,共设4个信息窗,每个信息窗的学习内容如下:
信息窗1:整十数乘整十数、整十数乘两位数的口算,不进位的两位数乘两位数的笔算。
信息窗2:简单进位的两位数乘两位数的笔算,两位数乘两位数的估算,简单的乘除混合运算。
信息窗3:较复杂进位的两位数乘两位数的笔算,乘除混合运算。
信息窗4:综合运用两位数乘两位数和乘除混合运算的知识解决简单的实际问题。
五、教材解读
1、信息窗1——美丽的街景
(1)本情境图呈现的是两位同学到市府大楼前参观的景象:高耸的市府大楼、漂亮的街灯、欢庆的气球等提供了丰富的信息。由于大楼宏伟高大、街道很长,气球比较多,这些信息都无法直观的表现出来,采用了对话、表格的形式展现这些数据。
(2)例题的设置与功能。本信息窗设计了3个红点。2个绿点共5个例题。
第一个红点:右边的气球团有多少个气球?算式 40×20 学习整十数乘整十数的口算
第二个红点:左边的气球团有多少个气球?算式 22×30 学习整十数乘两位数(不进位)的口算
第三个红点:这条街上一共有多少盏灯?算式 23 ×12 学习不进位的两位数乘两位的笔算,这是本信息窗的重点,也是本单元的重点。
第一个绿点:市府办公大楼有多少间办公室?算式 32×21 对前面所学知识的巩固
第二个绿点:新闻大厦有多少间办公室?算式 24×20 学习一个因数末尾有0的笔算及竖式的简便写法。
(3)教学中应注意的问题
①教学时,教师可以从学生已有的生活经验入手,让学生说说自己到过什么地方又玩过?看到了什么?然后再出示市府门前这一情景图,引导学生仔细观察这幅图中画的是什么地方?图中有什么?根据图中的信息能提出那些数学问题?也可以让学生说说自己的家乡,教师添加上一些数学信息,再让学生提出问题。
②要加强口算和估算。本信息窗是把口算、估算和笔算作为解决问题的一种策略出现,解决第一、二个红点问题时,虽然多种策略同时出现,侧重点是口算;解决第三个红点问题时,学生可能估算,可能口算,也可能笔算,但这里要以笔算为主。
③解决第三个红点问题虽然是笔算,但各部分积都不进位,强调学习两位数乘两位数的基本方法,突出第二部分积的书写位置,理解第二部分积个位上的0不写的理由。这一问题是本信息窗的重点。
④解决第二个绿点时,教师可以先让学生自己去写竖式,一般学生想不到简便的写法,教师可以提示、引导,然后通过比较来体会为什么这样写比较简便。
⑤自主练习:共安排了9道练习题。
第7题,是一道填表题,呈现的是一份海洋小学三年级校服订购单。练习时,可让学生结合自己的生活经验说一说单价、数量、总价的意思,然后计算出得数填表。注意合计栏的填写,明白哪些栏要填,哪些栏不填。
第9题,除了完成第(1)题外,第(2)学生可能提出“一共有多少棵树?”还可以补充条件进而提出更多的问题。
2、信息窗2——漂亮的街心花坛
(1)本情境图呈现的是城市街心花坛的场景。通过花坛、喷泉及灯柱等景物提供了丰富的数学信息。这些信息是通过安装工人的对话和信息牌标注的形式呈现的。
(2)例题的设置与功能。本信息窗设计了3个红点,也就是说三个例题。
第一个红点:“保护环境”花坛一共用了多少盆花? 算式27×23 学习两位数乘两位数(进位)的计算方法。
第二个红点:“美化家园”花坛一共用了多少盆花?算式 22×28 学习两位数乘两位数的估算。
第三个红点:还剩30根这样的灯柱没安装,这些灯泡够吗? 运用乘除混合运算解决问题。
(3)教学中应注意的问题
①教学时,教师可以承接信息窗1的情景,引导学生对情境图进行观察,理清图中所包含的数学信息,提出有关乘法的问题。也可以根据当地的实际,让学生谈一谈家乡的公园,教师加上相关的数学信息,让学生提出用乘法解决的数学问题。
②按照以往的经验,本信息窗的第一个红点应该是“还剩30根这样的灯柱没安装,这些灯泡够吗?”,而在这里却是第三个红点。如果把这一问题隐去,学生可能提出如下问题:“保护环境”花坛一共用了多少盆花?“美化家园”花坛一共用了多少盆花?一共有多少个喷头?一共买来多少个灯泡?这四个问题都可以用作第一个红点。在处理第一个红点时,可先让学生估一估,判断结果的大致范围,然后再让学生列竖式计算,并汇报及交流自己的算法,这里要突出的是简单的进位。第一个红点是本信息窗的重点。
③第二个红点重点是估算,应放手让学生用自己喜欢的方法解决,然后再组织学生进行交流,说说自己是怎样估算的(这是本红点的重点),也就是要突出估算的策略。
④第三个红点,明确要解决“还剩30根这样的灯柱没安装,这些灯泡够吗?”这一问题,可以用一共买的灯泡与装30根灯柱需要的灯泡数进行比较;也可以算一共买的灯泡数能装多少根灯柱与30根灯柱比较。然后再让学生独立列式计算,解决问题。需要注意:该问题的解决一是让学生通过交流,体会解决问题的不同策略;二是学生列式计算时,可以分步,也可以列综合算式(本类型的题目提倡分步解答);三是不要提出“归综问题”的类型,重在引导学生进行个性化的学习。
⑤自主练习:共安排了8道题目。
第5、7题都是用乘法解答的现实问题,练习时,可让学生看图编一个包含数学信息的故事,然后提出有关的数学问题,再独立地分析解答。再组织交流时,要让学生说说是怎样想的,为什么这样列式,还可以怎样列式等。
⑥第8题呈现的是学校运动会入场式的情景,并以统计表的形式呈现了许多数据,是一组用乘除混合运算解决的实际问题。练习时,可让学生先说说本校运动会入场式的情况,在出示画面,引导学生分析画面,明确解决问题的策略。这道题的关键是要让学生说说自己的解题思路。
⑦聪明小屋是一道排列问题,教师要引导学把所有情况列举出来,列举时要按一定的顺序进行排列,培养学生有序的思维。该题共有8种情况:飞机——汽车——飞机;飞机——汽车——火车;飞机——火车——飞机;飞机——火车——火车;轮船——汽车——飞机;轮船——汽车——火车;轮船——火车——飞机;轮船——火车——火车。
3、信息窗3——壮丽的观光塔
(1)本情境图呈现的是同学们到观光塔观光游玩的情景。提供了登观光塔的人数、门票的钱数以及经过路口的车辆等丰富的数学信息。这些信息都是通过工作人员、观光的学生以及交通民警说出的。
(2)例题的设置与功能。本信息窗设计了2个红点,也就是两个例题。
第一个红点:今天最多有多少人上塔观光? 算式 28×39 学习复杂的两位数乘两位数(进位)的笔算。
第二个红点:买6张票,100元够吗?算式30÷2×6 或30×(6÷2)再与100比较,学习运用简单的乘除混合运算解决实际问题。
(3)教学应注意的问题
①教学时可以从参观观光塔的话题引入,再引导学生仔细观察情境图,根据图中的信息发现有关的数学问题。
②第一个红点问题的乘法计算是较复杂的进位乘法,教学时教师可放手让学生用自己喜欢的方法独立解答,再汇报自己的想法和做法,以加深对算理和算法的理解。第二种方法,如果学生想不到,教师应加以引导,主要是为学生的估算策略打基础。
③第二个红点标示的问题,应明确要解决“买6张票,100元够吗?”这一问题,可以先求出“一张票多少钱?”也可以先求出6张票里有几个2张。在交流时要让学生体会解决问题策略的多样化。在解决问题时,学生可以分步列式,也可以列综合算式。这里要注意,教师不要提出“归一问题”的类型。
④如果学生提出“15分钟经过路口的车辆大约有多少辆?”等,可放手让学独立完成,作为练习来完成即可。
⑤自主练习:共安排了12道题目。
第7题是织毛衣车间加工毛衣的情况。渗透工效、时间、工作总量的数量关系。先填表,再解决问题。还可以让学生提出其他问题。
第9题时面食店卖出食品的个数和钱数的题目。本题的信息、问题比较多,要让学生仔细观察画面,理清画面中提供的各种信息,明确要解决的问题,然后再计算。第二、三问可借助第一问的答案来解决,如果学生没有借助第一问的答案,而直接用综合算式来解决,教师应予以表扬。
第12题是一道找规律的题目,练习时可引导学生先观察前两组题,寻找每组两个算式中因数与积的特点,发现规律,再运用规律解决后面两组题目,然后可让学生通过计算来验证规律是否正确。完成练习后还可以让学生按规律举出另外的题目。
4、信息窗4——多彩的街道夜景
(1)本情境图呈现的是多彩的街道夜景。包含有街道旁的广告灯、广场上五彩缤纷的霓虹灯、树上的彩灯、停车场上的旅游观光车等信息。这些信息是通过观光人、商人以及标注等形式呈现的。
(2)有关信息窗的说明。本信息窗是只有情境没有例题,更没有探索。意图是对前面所学知识的综合运用。这里的综合应用是让学生根据信息提出相关的数学问题,并选择自己喜欢的方法进行解决。在这里关键是让学生说一说解决问题的思路。
(3)教学中应注意的问题
读懂图是本节课的关键。教学时要让学生读图,读懂图中的数学信息。引导学生提出有质量的数学问题,也就是要学生根据前面所学的知识提出有关的问题,避免提出一些过于简单的问题。
教材中已提出:如果租B型车,需要多少辆?用400米彩灯线,装饰剩下的25棵树,够吗?
学生还可能提出如下问题:广告灯的租金是多少钱?一共有多少个灯泡?
要按照由易到难的顺序来解决学生提出的问题。在交流中巩固提升本单元所学的内容。这里既有解决问题的策略与方法的拓展与提升,也有计算方法的交流与巩固。
(4)自主练习:共安排了17道题目。
第5题,求幸福小区离少年宫有多远,需要先求小林平均每分钟走多少米;要想知道小林平均每分钟走多少米,需要借助第一题的答案;算式是:648÷9×11
第8题是一个大型停车场的情境,表中提供了停车场的收费标准。先让学生独立解答,然后组织交流,说说解决问题的思路。第(2)小题有两种缴费方式,分别算出所学费用后再进行比较。
第15题学生可能列成下列算式:43×5×2;43×6×2;在这里要上学生说出为什么这样列算式,只要有道理教师都要加以肯定。
第17题练习时首先让学生说说自己家住的楼层与楼梯层数的关系,然后再解决。对于农村的孩子来说可能没有类似的经验,教师可列举学生熟悉的例子或实物演示的方法帮助学生明白楼层数和楼梯台阶数的关系。
我学会了吗?是一幅草原牧场的综合情境图,辽阔的草图原牧场包含了丰富的数学信息,学生可充分利用这一情景,对自己学习的知识进行自我监测。除了解答教材中提出的问题外,学生还可提出:马和羊一共多少只?如果每只羊每天吃15千克草,这群羊每天吃草多少千克?等两步计算的问题。练习时,要让学生独立完成,然后再小组和班内交流,并进行集体评价。在此基础上,引导学生通过回顾与反思,总结出自己学习本单元的表现和主要收获。
(5)适当增加三位数乘三位数,三位数乘四位数。
㈣ 《两位数乘两位数》教学反思
掌握两位数乘两位数的笔算算理,在于学生能掌握好乘的顺序以及两个积的数位。本节课在设计时考虑力求体现以下几点:
1.通过改进教学方法,促进学习方式的改变。
教育家弗赖登塔尔认为:“学习数学的唯一正确的方法是让学生‘再创造’”。即让学生通过数学活动自己去探究、去寻找正确的方法。这本节课中,在学习探究两位数乘两位数的计算方法时,通过交流,让学生充分展示学习的思路,让学生充分感受到知识发生、发展的过程。让学生真正自己领悟数学知识掌握数学技能。组织学生创新,鼓励学生发表自己的观点、介绍不同的计算方法。课堂教学中,给同学们的思考时间较少,不够充分,所以导致语言重复,在讲解算理部分应再慢些,细些。
2.提倡算法的多样化,促进学生个性的发展。
算法多样化是问题解决策略多样化的一种重要思想,它是培养学生创新意识的基础。新课标指出:笔算教学不应仅限于竖式计算,应鼓励学生探索和运用不同的方法计算。学生的个性差异是客观存在的,对同一道计算问题,由于学生的生活经验、认知水平和认知风格存在着差异,常常会出现不同的计算方法和解题策略,这正是学生具有的不同个性的体现。
在本节课教学28×12时,应放手学生试算,学生会出现多种不同的计算方法,有根据口算的方法来计算的;有把乘数拆成两个一位数,利用以前学过的知识来计算的;有直接列竖式进行计算的;在学生独立思考解决的基础上,再让学生发表自己的观点,倾听同学的解法,进行小组内交流,这样的教学,有利于培养学生独立思考问题和创新能力。这节课虽然使学生都明白了28×12的竖式算法,但没有更好的做到放手让学生试算这一步。
3.这节课的重点是掌握两位数乘两位数的笔算算法。
学生能掌握好乘的顺序以及两个积的数位。所以在做每一道习题的时候,我都会在这方面特别的强调,但这节课我只叫了一组两个人说,应多叫几个学生,反复强调注意数位对齐。
4.注重创设和谐的学习氛围。
心理学家布鲁纳指出:“情感并不一定伴随认识效果自然而然地产生发展,而需要教育者专门地评价和培养。”小学生,尤其是低年级的小学生学习数学的积极性,一定程度上取决于他们对学习素材的感受和兴趣。为了激发学生的学习兴趣,根据低年级学生设计情境激发他们的学习兴趣,我以帮助小朋友解决问题的小故事贯穿全课并以此展开。又如练习部分创设了“数字探险乐园”、“火眼金睛”等教学情境,并进行挑战赛、口算、改错等练习。练习变成不是为了学习而练习,激发了学生学习的主动性。
5.注重算用的完美结合。
众所周知,计算是帮助人们解决问题的工具,只有在实际的应用中才能真正体现其作用。所以,把计算与应用结合起来,将计算作为一个组成部分,能使学生较为深刻地理解为什么要计算、选择什么方法进行计算更合理。这对于培养学生用数学解决问题的能力和良好的数感都十分有利的。所以在本节课的教学中,我在学生口算的基础上重点突出笔算,使学生能正确理解和掌握笔算“两位数乘一位数”的算理、算法,并在组织有层次性的练习中,让学生进一步理解算理运用算法。让学生在知识技能方面掌握得扎实,同时还培养了学生应用所学知识解决实际问题的能力。
不足之处:
1.整个教学流程虽体现了教学目标,并突出重难点,但总感觉整个教学环节不够顺畅。而课后有所想,要上这样的展示课,应面对空荡荡的教室而自言自语,由此而多当一回“疯子”老师那该多好啊!
2.课堂语言表达,有时语音不清晰,被个别点评老师抓住弱点。可见,在课堂教学上语言表达能力至关重要。应加强课堂语言表达能力的培养,课堂语言感染力的训练。
㈤ 《两位数乘两位数》的教学反思
核心提示:两位数乘两位数的笔算乘法,是在学生掌握了两位数乘一位数的笔算方法、两位数乘整十数的口算方法的基础上进行教学的,学生虽然在乘法进位的方法、笔算的顺序和数位的对齐方面已有了一定基础,但计算作为最根本的基础。
两位数乘两位数的笔算乘法,是在学生掌握了两位数乘一位数的笔算方法、两位数乘整十数的口算方法的基础上进行教学的,学生虽然在乘法进位的方法、笔算的顺序和数位的对齐方面已有了一定基础,但计算作为最根本的基础知识和基本技能,应该是我们教学的重点。所以本节课把教学目标定位在:使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。同时培养学生用“旧知”解决“新知”的学习方法及善于思考的学习品质,养成认真计算的学习习惯。
本节课中,在学习探究两位数乘两位数的计算方法时,首先让学生自主探索,然后通过交流,让学生充分展示学习的.思路,让学生充分感受到知识发生、发展的过程。让学生真正自己领悟数学知识掌握数学技能。组织学生创新,鼓励学生发表自己的观点、介绍不同的计算方法。如“请在小组里说说你的算法,也听听别人的算法!”“谁愿意与同学们分享你的计算方法?”“在这些算法中,你比较欣赏哪一种算法?”等等,让学生在交流中学会吸收,学会欣赏,学会评价。
本节课的教学重、难点是乘的顺序和第二部分的书写位置问题,使学生掌握基本的乘法笔算方法。为了突出重点,突破难点,教学时每做一道题,都让学生在小组内交流算法,发挥小组长的作用,优秀生教后进生;设计层次性强、生活化的练习,即调动了学生学习的积极性,又让学生在生活中学习有用的数学。
㈥ 小学数学两位数乘两位数口算教学反思
小学数学两位数乘两位数口算教学反思
最近,笔者参加县实验小学组织的数学优质课评比,听了三位教师同上的课——《两位数乘两位数口算》(人教版第六册上数学教材),颇有一番感触。评比采取的是教师抽签后定时备课,然后借班上课的方式。三位教师通过创设购物教学情景,引导学生提出一系列问题,并让学生列出30×10的算式,再让学生在比较算法中优化算法,最后让学生用“先算3×1=3,再算30×10=300”进行说理,完成教学任务。
在听课中,有两个班的两位学生对老师提出这样一个问题:“老师,为什么30×10=300?”执教老师想了一下解释说,因为30×1=30,所以30×10=300(即1个30是30,10个30就是300),这位学生对老师的解释似乎还不理解,满脸疑惑地坐下了。我们也感到老师的这一解释,好像是在解释一种算法,而没有从学生原有的认知水平去解释算理。
类似于这种算理教学,往往是教学的难点,教师在备课中应予认真考虑。教学中如何有效地面对学生的疑问。
领会学生的疑问,鼓励学生质疑
弄清题意,是解决问题的前提。有些教师在教学中由于没听明白学生提出的问题,对学生提出的问题采取不理不睬的态度,这样容易伤害学生的学习主动性和积极性,导致学生以后不愿意再提问题。这一节课在最后的练习中,有位学生提出这样的问题:“老师,为什么50×40=2000,计算结果得数后面是三个零。”老师因为听明白这一问题是针对30×10=300的反驳,就让学生说一说口算的顺序:先算5×4=20,再算50×40=2000(20后面的两个数用红粉笔标出)。这样一来,学生就明白了为什么结果是三个零,而不是两个零。总之,教师要多给学生思考问题时间,鼓励学生质疑问难。只要问题是围绕上课的主题,老师都应先予表扬、鼓励。要知道,学生的求知欲望是在老师的表扬激励下不断产生的。
对待疑难问题,教师要遵循学生的认知水平
“为什么30×10=300?”这是一个算理教学问题,学生原有的认知水平是已学过两位数乘一位数口算,如10×9,30×9。因此教师在复习导入时,应从解决这些问题入手,通过变式让学生得到算式:10×10和30×10,从而揭示课题——《两位数乘两位数口算》,再引导学生解决这一问题。当学生对于30×10=300就有一定的认知准备,他们会想到运用已有的知识和方法来解决这一新知识,就会说:因为30×9=270,而30×10可以表示成9个30再加上1个30,即270加上30一共是300,所以30×10=300。这一教学策略,充分考虑了学生已有的认知水平,通过“以旧迎新,促迁移”的.方法来解决算理这一疑难问题。可惜我们很多教师把这一传统的教学策略忘掉了,以致不能正确回答学生提出的问题。
教师回答不了问题,要借助学生的思维来解决
上述问题教师若一时回答不了,可让全班学生思考一下:怎样来解释这一问题。我们在听课中发现,教师在鼓励学生算法多样化时,有很多学生想到“30×10”也可以用“30×5+30×5=300”得到结果,这也是一种解释算理的算法。教学中学生的思维往往出乎意料,并能有效解决问题。教师应树立一种观念,教学是平等的,学生是富有个性与创造力的个体。教师要相信学生,要充分利用学生已有的认知水平,引导学生自己获取新知识。这样,新课程倡导的主动、探究、合作交流的学习方式才能在教学中得到有效应用。教学相长,是永恒的教学原理,学会向学生学习的老师才是学生喜欢的老师。
师生无法解决的问题,教师应在课后求助专家
对待学生提出的疑难问题,教师采用应付了事,不善反思的态度,绝不是一位好教师。当前的课改,对于教师的专业发展提出了许多有效的建议,教师的实践反思和专业引领是教师专业发展的重要途径。许多优秀教师的成长,也说明了不断进行教学实践反思对促进教师专业成长的意义。教师在教学中遇到疑难、挫折并不可怕,可怕的是教师采取一种逃避、马虎应对的态度。如在上这一节课中,有两位教师在课后还认为自己的算法解释是对的。固执己见,往往会误人子弟。敢于正视教学疑难问题,并进行深入的研究,是许多优秀教师的可贵品质。
教学要创设拓展性问题,鼓励学生大胆探索
在这节课教学进入最后阶段时,有位教师让学生口算一道题“340×50=?”很多学生口算不出来。这时,教师引导学生先算34×5,再在得数后面补上两个零,学生学得非常主动而且有兴趣。最后老师强调,今后一定要学会较复杂的两位数乘以一位数的口算方法,而且这一方法仍是我们今后深入学习经常要运用到的一种重要运算技能。适当渗透今后即将学习的新内容,有利于鼓励学生大胆探索,是新课程教学的一种很好教学策略。总之,在教学过程中,为学生创设出拓展性教学问题,有利于激发学生学习兴趣,发展学生思维能力。
;㈦ 《两位数乘两位数应用》教学反思
两位数乘两位数的应用,是第三单元《乘法》的第四课时,是在两位数乘整十数、两位数乘两位数的基础上学习的,其背景知识还有乘法的意义与乘法口诀以及一位数乘两、三位数的乘法。那么有关应用,我的教学目标该如何定位?在课堂上,通过我们的学习,孩子们又能得到哪些新的知识,新的启发?思虑再三,最后把教学目标定位为:A级目标: 在解决实际问题的过程中,能进行简单的估算。B级目标: 1、能选择适当的方法进行估算,体会估算在生活中的作用。2、了解并掌握两位数乘两位数的竖式计算中的进位法则。C级目标:培养数感,归纳常见的“数学模型”。
在实际操作后,才发现这样的定位给本节课造成了很大的阻碍,没有一个重中之重,没有一个聚焦的中心,什么都比较重要,到最后也是匆匆收场。为此,我把目标做了调整,在估算环节,减少时间,进位加法进行适当的练习,不进行数学模型的引入。
先来说说估算,“注重口算,加强估算”一直是课改强调突出的。通过情境问题串,提出了两个有关估算的问题。第一次估算,是估计全校大约有多少人,通过这个估算过程,探索如何结合具体情境进行估算的方法,体会估算本身也是生活中常用的解决问题的办法。第二次估算,通过计算得出运算结果后,可以通过估算来检验预算结果的合理性。最后得出结论:估算并没有统一的标准,只要合理、方便即可。那么我在估算这个环节不会进行改动,只要在时间上稍微把握好,节奏快一些即可。
接下来是进位竖式环节,这一环节其实是两位数乘两位数计算方法的一个应用。先独立列出算式,21×26或者26×21.然后放手让学生探索计算方法,“你打算怎样算出得数?可以在练习本上写一写。”学生可能会出现多种方法,例如:拆数后口算、表格计算、竖式计算等。然后交流各自的算法,只要学生独立思考,能用自己的方法合理地解决问题,我都给予鼓励。重点研究竖式计算,可以把口算、表格和竖式这三种方法的每一步联系起来,加深对竖式每一步的理解。比如,竖式中的26表示什么,是前两种算法中的哪部分,520呢?在用竖式计算时,我会重点关注后进生其竖式中的进位,试着让他们板书,然后全班订正。利用已经熟悉的方法对竖式中的进位进行理解记忆,这样的迁移对进位竖式的学习有很大的帮助。
当进位竖式已经理解透彻,可以很明确的说出每一步的意思以及进位方法后,可以出示第三板块巩固练习。这里我准备了两道练习题,一是电影院的座位问题,二是课本练一练光明学校人数问题。根据上课随时出现的状况,来进行分析、处理。
接下来我想谈谈有关课堂小结的问题,总体来说,我的课就是虎头蛇尾,开篇让人舒服,缓缓道来,越到后面,越散的开,铺了一地就着急往后赶的节奏,没有收持有度,没有节奏分明,更没有最后很重要的课堂小结,我们轰轰烈烈一节课,到底学了什么,学生们能总结到何种程度,他们还有怎样的思考?有什么新的启发或者是新的困惑?没有,我们好像注意力转移到中间建构环节,导致后期的收尾是一团糟,殊不知,最后的小结才是完美的收官,才是画龙点睛之笔,为我们后期的脑图,做了很充足的准备。关于操作上,可以让孩子尝试着总结,也可以我们带着孩子们来梳理思路。
总之,本节课需要修改的地方很多,一些大的枝节是需要放弃掉的,聚焦、总结,是我最大的感慨,这是我这节课中最最欠缺的,在今后的课程中,我的脑海会紧紧铭记这两个词语,让不同的孩子在数学中得到不同的发展,让我的课程内容更加清晰明了。