‘壹’ 怎么提高做初中数学压轴题的能力
初中的数学压轴题一般都是二次函数的图像和几何的结合,因为是压轴题所以很多内容都汇聚于此
所以说
首先
先把二次函数基础学好
会做简单的变性题
然后对几何尤其是相似的熟练掌握
其次是根据题型合理推测从而证明要记住每一个知识点都应该掌握
即使不能达到举一反三
也得会举一反一
例如
对于线段长的最小值
使其成为一条直线
然后计算
随语特殊的三角形要分析多种情况
特殊性状的判断如果能与三角函数挂钩
就应该利用起来
动点面积的计算要详细的清楚计算的公式能从题目上与其联系
从而列出面积的函数
最大值最小值的可能是二次函数
如果是一次函数的话就涉及到取值范围
相似的时候要注意对应线段和已知线段
列出正确的比例式
还有其他的诀窍自己做题总结吧
‘贰’ 中考数学压轴题解题技巧及训练(完整版)
何时注意分类讨论
分类讨论在数学题中经常以最后压轴题的方式出现,稍不注意就会出现解答不全面的问题。以下几点是需要大家注意分类讨论的:
1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5、考查点的取值情况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。
最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
压轴题解题技巧
纵观全国各地的中考数学试卷,数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。
(一)函数型综合题
是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有:
①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;
②反比例函数,它所对应的图像是双曲线;
③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
(二)几何型综合题
先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化。
求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:
在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等;
探索两个三角形满足什么条件相似等;
探究线段之间的位置关系等;
探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
四个解题切入秘诀
切入点一:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
答题技巧
1、定位准确防止 “捡芝麻丢西瓜”
在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
2、解数学压轴题做一问是一问
第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。
过程会多少写多少,因为数学解答题是按步骤给分的,字迹要工整,布局要合理;
尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。
在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。
‘叁’ 中考数学压轴题诀窍 压轴题解题技巧
数学的压轴题一直以来是师生重点钻研的项目,其特点是分数多、难度大、考验学生的综合能力。那么做中考助学压轴题有没有技巧呢?
一、学会运用数形结合思想
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关。
其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
二、学会运用函数与方程思想
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。
因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。
例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
一、以坐标系为桥梁,运用数形结合思想。
纵观最近几年各地的中考数学压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,点的位置转化为坐标问题,“三十六技:点在图像上,点的坐标满足方程”;另一方面又可借助几何直观,得到某些代数问题的解答,把坐标的问题转化为线段的关系,利用“直角坐标系中求线段的长度,不管三七二十一先考虑三角形相似再说80%”,“几何中求线段的长度,不管三七二十一先构造直角三角形再说80%”的方法解决问题。
二、以直线或抛物线知识为载体,运用函数建模、求解方程思想。
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。“方案选择与最值问题,不管三七二十一先建立目标函数再说100%”、“二次函数极值问题,不管三七二十一先考虑化成顶点式作图再说100%”。
在解答一次函数与二次函数图像问题的综合题时,应结合图像的特点、函数的性质,牢记参数ak的几何意义,“三十六技:k在一元一次函数中的作用”、“a在一元二次函数中的作用”、“二次函数图形对称”。
‘肆’ 到了初三,怎么才能提升解数学的最后几道压轴题的能力
如果想要解数学最后几道压轴题的话,就一定要在平时提高自己的个人能力,多学习一些知识,多做一些题就可以了。
‘伍’ 中考数学压轴题怎么练
中考压轴题练习方法应有以下几个方面:
一、审题能力的训练,能够正确理解题意,分析已知和未知条件,能够将各种条件与学过的知识联系起来;平时找一些多解问题的题练一练;
二、识图能力的训练,会分析图形的特点,图形的变化规律,分解图形,及常用的辅助线;注意掌握如三角形、四边形、圆等常用的辅助线;
三、解题能力训练,有心态和方法两个方面,心态上要平和,不要总想着一下就把压轴题全看明白,要学会循序渐进,一点点的推理,最终找到正确答案,急躁只能影响解题思路;方法上要不断总结,对于如动点问题、图形变换问题、函数与图形问题、存在性问题、数形结合问题等通过练习总结各类题型的特点,提高能力。
‘陆’ 初中数学压轴题解题技巧有哪些
数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和 方法 的综合性,多数为函数型综合题和几何型综合题,或两类问题的组合。下面是我为大家整理的关于初中数学压轴题解题技巧,希望对您有所帮助。欢迎大家阅读参考学习!
1初中数学压轴题解题技巧
函数型综合题
以给定的直角坐标系和几何图形为背景,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法有待定系数法,包括关键是求点的坐标,而求点的坐标基本方法是几何图形的性质地几何法(图形法)和代数法(解析法)。
几何型综合题
先给定几何图形,根据已知条件进行计算,常以动点或动形为依托,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件全等,相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),此类问题当属几何与代数的综合问题。找等量关系的途径在初中主要有利用勾股定理、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。是压轴题的选择梯形。
2初中数学应用题的解题技巧
认真审题
很多学生在看到应用题之后往往急于寻找其中可用的条件,因此他们往往把目光都集中在一些数据上,而忽视了文字叙述,尤其是在考试时间比较紧张的时候,很多学生在做应用题的时候往往在读题目时囫囵吞枣,没有审清题意就急于解答,从而导致错误的发生。因此,要想做好应用题首先就要认真审题,理清题目中所表达的意义,这样,才能够进行接下来的解题活动。
归纳问题
在读完题目以后,学生首先要做的就是对题目进行归纳,了解清楚所做的题目属于什么类型,这样才能够根据不同的类型把实际问题转化为数学模型。在初中阶段,我们接触的比较多的应用题类型主要包括行程问题、工程问题、生产问题、营销与策略问题、增长率问题、几何问题等,而我们在读完题目进行分类以后,就可以根据不同类型的问题在题目中有目的地寻找需要的条件。例如,在做到路程问题时,我们就要在题目找出路程、速度、时间等数量及其关系,在做到营销与策略的问题时,就要理清楚单价、数量、总价等条件。总之,只有先进行科学的归纳,才能够在此基础上运用之前的知识来进行解题。
找出问题
所谓找出问题,就是要明确在这道应用题中需要我们求出什么,然后从问题中利用 逆向思维 来推测出要想解决这些问题需要哪些条件,这样,我们才能以这些信息为依据回到题目中去努力寻找这些条件,为解题做准备。
理清数据信息
为了提高学生的分析和归纳的能力,很多的应用题中会故意给学生设置一些迷雾,给出一些与题目无关的条件或者数据。因此,我们要想解决问题,就要努力在所给出的条件中整理出所需的数据,然后根据题目要求对这些条件或者数据进行整理分析。
3中考数学难题解题技巧
正向思维是最常用的方式
也就是审题之后顺着题目要求,从前到后一点点求证,这是证明题的基本方法,中等难度题目、简单难度题目中较多使用的就是这种方法。 逆向思维,就是与正向思维相反,从求证入手,要想做到这样的结果,需要什么样的条件,一步一步反向分析。逆向思维对于读完题干要求之后完全不知从何入手的题目有很大的解题帮助,从结论出发,有时候问题反而更简便
例如:要证明有两条边长度相等,那么结合图形发现只要证明他们存在的三角形相等就可以了;为了证明这两个三角形是全等的,那么我们需要有什么样的角的条件;为了找到角之间的关系,我们需要在哪里做一条辅助线……这样思考下去,其实所需要的一切条件就都具备了。这种解题方法在平时的解题中要对学生多锻炼。
正逆结合
这是高难度题目中重点强调的解题思路,对于一些从结论很难得出完整思路,又不知道从哪里开始下手时,就要选取正逆结合的方法。初中数学中,基本上题目给的已知条件都是有用的,所以一定不能放过每一个条件,多做引申。
比如给了三角形一条边的中点,我们就要考虑是否要做出中位线,给出了梯形我们就要考虑是不是要做高,是不是要平移腰或者对角线,是不是要补出某种图形等等。
4初中数学证明题解题技巧
仔细审题,确定题意
审题是做题的第一步,这个过程就像翻译机的工作原理,要把纯文字语言转换成我们所理解的数学模型。首先要仔细的读题,标注出重点词,分清已知和求证。比如讲题目中的要求改写成“如果在等腰三角形中,做出两底角的角平分线,那么可以推出这两条角平分线长度相等”。如果有图就最好结合图形,如果题目没有给图,就要求学生 根据题意做出合理图形,将图形模型建立起来,切忌凭空想象,一定要动手画图。再次就是已知数学语言和符号写出“已知”和“求证”,“已知”是命题的条件,“求证”是命题的结论,一定要注意已知和求证的表达方式是数学语言、符号。
审题中需要注意的是,除了要标记题目的重点,还要学会适当的引申。在审题的过程中将一些课堂上学过的基本定理和基本图形、特殊图形与题目相结合,便于后面进行解题时提高正确率和速度。这也是对学生构建知识体系提出了更高的要求。
不重不漏,仔细检查
分析过程完成后,就是答题的重头戏了,用数学的语言和符号阐述整个证明过程。书写过程要求严谨细致,既不能无中生有,也不能胡说八道、乱来一气,要做到有根有据,有因为、有所以。在几个解题思路中选取一个,按照解题思路完整的表达就可以了。
中学生错题率高还有一个原因就是没有养成检查的好习惯。数学的严谨性在证明题中体现得淋漓尽致,每一个步骤都要具备合理性,要写出足够证明结论的公理、定理或者推论,不能凭空捏造,也不能随意推想。在证明的过程中,每一步都要仔细检查,不能有所疏漏、少条件,也不能犯写作答案,看错要求等等粗心导致的错误。只有仔细检查,才能保证做到言之有理,言之有据,不失一分。
初中数学压轴题解题技巧有哪些相关 文章 :
1. 初中数学中考知识重难点分析
2. 2020中考数学科目的压轴题解题方法
3. 2020中考数学备考之压轴题十个方法
4. 初二数学压轴题答题技巧
5. 学好初中三年数学的方法有哪些
6. 怎样提高初三数学压轴题
7. 初三数学学习方法和技巧大全
8. 中考数学总复习六大策略
9. 2020高考数学得高分的技巧大全
‘柒’ 初三学生怎样才能学好数学压轴题
1、以坐标系为桥梁,运用数形结合思想
纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、以直线或抛物线知识为载体,运用函数与方程思想
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。
因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3、利用条件或结论的多变性,运用分类讨论的思想
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察。
有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
4、综合多个知识点,运用等价转换思想
任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换。
中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。
5、分题得分中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
6、分段得分一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。
‘捌’ 初三数学压轴题解题技巧是什么
强化五大类压轴题专题训练,提高素质塑造.
(1)基础:抛物线的顶点、对称轴、最值、圆的三大定理;
(2)模型:对称模型、相似模型、面积模型等;
(3)技巧:复杂问题简单化、运动问题静止化、一般问题特殊化;
(4)思想:函数思想、分类讨论思想、化归思想、数形结合思想。
1、以坐标系为桥梁,运用数形结合思想
纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、以直线或抛物线知识为载体,运用函数与方程思想
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3、利用条件或结论的多变性,运用分类讨论的思想
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
4、综合多个知识点,运用等价转换思想
任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。