❶ 数学包含关系符号有哪些
包含用数学符号为:⊆
集合的符号还包括一下几种
∪(并集)、∩(交集)、∈(属于)
其他数学符号
运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
关系符号
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于)。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号,“|”表示“能整除”
❷ 运算符号分别是哪些数学家发明的
这些符号,在古代(古希腊)其实都是自己随便定义
国际上统一定下来是在国际数学大会上,学者们为了方便交流,一起商议定下来的
❸ 有哪些数学计算符号
小学:+,-,×,÷,
初中:x^y(幂)
高中:∑(求和)。㏒,㏑,∏(连乘)
大学∫(积分)
❹ 数学运算符号包括哪些
数学运算符号包括:
“+”“-”“×”“×”及乘方运算
仅供参考~
❺ 数学符号有哪些
^是为了说明接下去是某个数的几次方。
数学符号
数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用“+”号。
“+”号是由拉丁文“et”(“和”的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文“piu”(加的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。
“-”号是从拉丁文“minus”(“减”的意思)演变来的,简写m,再省略掉字母,就成了“-”了。
也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号。
到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号。
乘号曾经用过十几种,现在通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:“×”号象拉丁字母“X”,加以反对,而赞成用“·”号。他自己还提出用“п”表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。他认为“×”是“+”斜起来写,是另一种表示增加的符号。
“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。后来瑞士数学家拉哈在他所着的《代数学》里,才根据群众创造,正式将“÷”作为除号。
平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“√”表示根号。“r”是由拉丁字线“r”变,“——”是括线。
十六世纪法国数学家维叶特用“=”表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来。
1591年,法国数学家韦达在菱形中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了“=”号,他还在几何学中用“∽”表示相似,用“≌”表示全等。
大于号“>”和小于号“<”,是1631年英国着名代数学家赫锐奥特创用。至于“≯”、“≮”、“≠”这三个符号的出现,是很晚很晚的事了。大括号“{}”和中括号“〔〕”是代数创始人之一魏治德创造的。
数学符号一般有以下几种:
(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率∏。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ),对数(log,lg,ln),比(:),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是反比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“〔〕”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),x的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。
符号 意义
∞ 无穷大
∏ 圆周率
│x│ 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
参考资料:http://ke..com/view/37054.htm
❻ 数学运算符号都有那些
数学运算符号:
加号(+),
减号(-),
乘号(×或·),
除号(÷或/),
两个集合的并集(∪),
交集(∩),
根号(√ ),
对数(log,lg,ln),
比(∶),
微分(d),
积分(∫)等。
❼ 数学的运算符号有哪些 数学运算符和运算符的优先级
数学的运算符号:加(+)、减(-)、乘(×)、除( ÷)。
加、减法是第一级运算,乘、除法是第二级运算;在四则混合运算中要先算第二级运算,后算第一级运算,即“先乘除后加减”。
❽ 数学中的运算符号有哪些
1、运算符号:
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
2、数学符号大全及意义之结合符号:
如小括号“()”,中括号“[]”,大括号“{}”,横线“—”=。
如正号“ ”,负号“-”,正负号“ ”(以及与之对应使用的负正号“”)
3、数学符号大全及意义之省略符号:
如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数)
双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠)
(8)数学的运算符号有哪些扩展阅读:
+ 加号 求两个数的和
- 减号 求两个数的差
× 乘号 求两个数的积
÷ 除号 求两个数的商
^ 乘方 求一个数的几次幂
√ 开方 求一个数的几次方根
d 微分 求一个函数的导数(微分)
∫ 积分 求一个函数的原函数(不定积分)