A. 求初中数学中所有“心”的概念。
三角形共有五心:三角形的内心、外心、重心、垂心、旁心
内心:三条角平分线的交点,也是三角形内切圆的圆心。
性质:到三边距离相等。
外心:三条中垂线的交点,也是三角形外接圆的圆心。
性质:到三个顶点距离相等。
重心:三条中线的交点。
性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。
垂心:三条高所在直线的交点。
性质:此点分每条高线的两部分乘积
旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点
性质:到三边的距离相等。
B. 高中数学中的四心
三角形的三条中线相交于一点,这点称为三角形的重心;垂心:三角形的三条高或其延长线相交于一点,这点称为三角形的垂心;内心:三角形内切圆的圆心称为内心。
外心到三角形三条边的距离相等;外心:三角形外接圆的圆心称为外心,也是三条边的垂直平分线的交点,外心到三角形三个顶点的距离相等。
《高中数学》是由人民教育出版社出版的图书,该书由人民教育出版社、课程教材研究所、数学课程教材研究开发中心共同编制,内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。
一、正确地理解概念
我国从20世纪50年代以来,中学数学教学大纲虽经历多次修订,但都有一个共同的指导思想,这就是搞好三基。并强调指出,正确理解数学概念是掌握数学基础知识的前提。而当前我国数学教学中的突出问题,恰好是把掌握数学基础,即数学概念的正确理解,给忽视了。
一方面是教材低估了学生的理解能力,为了“减负”,淡化甚至回避一些较难理解的基本概念;另一方面,“题海战术”式的应试策略,使教师没有充分的时间和精力去钻研如何使学生深入理解基本的数学概念。说是为了减负,其实南辕北辙,老师、学生的压力都增加了。
没有“过程”的教学,因为缺乏数学思想方法为纽带,概念间的关系无法认识,概念间的联系难以建立,导致学生的数学认知结构缺乏整体性。
二、对不同的概念,要采取不同的方法
有的只需在例题教学中实施概念教学。比如:相关关系的概念是描述性的,不必追求形式化上的严格。建议采用案例教学法。对比函数关系,重点突出相关关系的两个本质特征在:关联性和不确定性。
有的先介绍概念产生的背景,然后通过与概念有明显联系、直观性强的例子,使学生在对具体问题的体验中感知概念,提炼出本质属性。
有的要联系其它概念,借助多媒体等一些辅助设施进行直观教学。
三、在新旧概念之间掌握概念
数学中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。
再如,函数概念有两种定义,一种是初中给出的定义,是从运动变化的观点出发,其中的对应关系是将自变量的每一个取值,与唯一确定的函数值对应起来:另一种是高中给出的定义,是从集合、对应的观点出发,其中的对应关系是将原象集合中的每一个元素与象集合中唯一确定的元素对应起来。
从历史上看,初中给出的定义来源于物理公式,而函数是描述变量之间的依赖关系的重要数学模型,函数可用图像、表格、公式等表示,所以高中用集合与对应的语言来刻画函数,抓住了函数的本质属性,更具有一般性。
新东方优能中学专家认为分析两种函数定义,其定义域与值域的含义完全相同,对应关系本质也一样,只不过叙述的出发点不同,所以两种函数的定义,本质是一致的。当然,对于函数概念真正的认识和理解是不容易的,要经历一个多次接触的较长的过程。
以上内容来源:网络-高中数学
C. 高等数学里的行心是什么,怎么求
形心:物体的几何中心。(只与物体的几何形状和尺寸有关,与组成该物体的物质无关)。
面的形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
求形心:
判断形心的位置:
当截面具有两个对称轴时,二者的交点就是该截面的形心。据此,可以很方便的确定圆形、圆环形、正方形形的形心;
只有一个对称轴的截面,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。
建坐标:形心位置:(Xc,Yc)
Xc=[∫a(ρxdA)]/ρA=[∫a(xdA)]/A=Sy/A
Yc=[∫a(ρydA)]/ρA=[∫a(ydA)]/A=Sx/A
D. 数学有什么心性质分别是什么
圆心,内心,外心,垂心,重心,中心等
圆心:圆的中心了
内心:三角形内接圆圆心,三条角平分线的交点
外心:三角形外界圆圆心,到三个角的距离相等,三边的垂直平分线交点
垂心:三角形三条高线的交点
重心:三角形三边中线的交点
中心:等边三角形的三条三线(角平分线、中垂线、高线)合一交点,三点(内心、外心、重心)合一