① 高二上学期数学内容
必修1 集合、函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)
必修2 立体几何初步、平面解析几何初步
必修3 算法初步、统计、概率
必修4 基本初等函数(三角函数)、平面上的向量、三角恒等变换
必修5 解三角形、数列、不等式
2-1 常用逻辑用语,圆锥曲线与方程、空间中的向量与立体几何
2-2 导数与应用、推理与证明、数系的扩充与复数的引入
2-3 计数原理、统计案例、概率
3-1 数学史选讲
3-2 信息安全与密码
3-3 球面上的几何
3-4 对称与群
3-5 欧拉公式与闭曲面分类
3-6 三等分角与数域扩充
4-1 几何证明选讲
4-2 矩阵与变换
4-3 数列与积分
4-4 坐标系与参数方程
4-5 不等式选讲
4-6 初等数论初步
4-7 优选法与试验设计初步
4-8 统筹法与数论初步
4-9 风险与决策
4-10 开关电路与布尔代数
② 高二上学期数学内容有哪些
1.解三角形
2.数列
3.不等式
然后文科是选修1-1
1.简单逻辑
2.圆锥曲线
3.导数
理科是选修2-1
1.命题逻辑
2.圆锥曲线
3.空间向量
2高二数学学习方法
高二的数学比高一数学更难,也是一个分水岭。高考中的三道难一些的大题都是高二学习的。高二既要熟悉高一讲过的内容,还要在接下来学会应用。例如高一的函数知识,高二的导数知识就需要应用函数的思想。
高二的新知识中,立体几何知识,对学生的思维要求很高,主要考查学生的空间想象能力,后面的解析几何对学生的能力要求很高,做题速度,运算也是考察的方向,高二的知识难度和计算量都比高一大很多,必须快速进入高二的学习,这样后面的学习才能游刃有余!
3高二数学学习注意事项
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
③ 高二上学期数学知识点总结
学习数学最重要是懂得去总结知识点,下面是我为大家整理了高二上学期数学知识点总结,希望能帮到大家!
一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式
四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例
五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程
八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质
九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.
十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质
十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ(24个)
十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归
十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.
十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的最大值和最小值
十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法
1.数列的`定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合
2.数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,
这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一.如:数列1,2,3,4,…,
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.
(4)有的数列的通项公式,形式上不一定是唯一的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一.
4.数列的图象
对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:
序号:1234567
项:45678910
这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.
由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.
数列是一种特殊的函数,数列是可以用图象直观地表示的.
数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.
把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.
5.递推数列
一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①
数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1
④ 高二上学期数学学什么 主要学哪几本书
相信很多学生都想知道高二上学期数学学什么内容,下面我整理了一些相关信息,供大家参考!
对于不同的省市,不同的学校,在课程设置上都是不一样的。以下我整理的内容仅供参考!
首先是必修5
1.解三角形
2.数列
3.不等式
然后文科是选修1-1
1.简单逻辑
2.圆锥曲线
3.导数
理科是选修2-1
1.命题逻辑
2.圆锥曲线
3.空间向量
高二的数学比高一数学更难,也是一个分水岭。高考中的三道难一些的大题都是高二学习的。高二既要熟悉高一讲过的内容,还要在接下来学会应用。例如高一的函数知识,高二的导数知识就需要应用函数的思想。
高二的新知识中,立体几何知识,对学生的思维要求很高,主要考查学生的空间想象能力,后面的解析几何对学生的能力要求很高,做题速度,运算也是考察的方向,高二的知识难度和计算量都比高一大很多,必须快速进入高二的学习,这样后面的学习才能游刃有余!
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
⑤ 高二上学期数学学什么 内容难不难
很多学生都想知道高二上学期数学学习什么内容,下面我整理了一些相关信息,供大家参考!
1 高二上学期数学学习什么
理科:必修2(解析几何初步与立体几何)、选修2-1(圆锥曲线)、选修2-2(分类记数原理)、选修2-3(排列组合)
文科:必修2(解析几何初步与立体几何)、选修1-1(平面几何)、选修1-2(记数原理)
可能各地区学校之间有差异,一切还以学生所在学校的教材为准,以上仅供参考!
1 高二数学学习内容难吗
高二的数学比高一数学更难,也是一个分水岭。高考中的三道难一些的大题都是高二学习的。高二既要熟悉高一讲过的内容,还要在接下来学会应用。例如高一的函数知识,高二的导数知识就需要应用函数的思想。
高二的新知识中,立体几何知识,对学生的思维要求很高,主要考查学生的空间想象能力,后面的解析几何对学生的能力要求很高,做题速度,运算也是考察的方向,高二的知识难度和计算量都比高一大很多,必须快速进入高二的学习,这样后面的学习才能游刃有余!
高二数学中有很多不容易的地方相对来说比较难,例如解析几何等。学习数学一定要专心、耐心,其实学习数学就是培养一个人的逻辑分析能力,高二的数学不是最难的,当你掌握其中的公式及其适用的范围,到了高三复习起来就不会觉得很困难,看到其中的内容就感觉好像看到老朋友似的。
1 高二数学学习方法
1、课前预习能提高听课的针对性
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。其次就是听课要全神贯注。
2、特别注意讲课的开头和结尾
讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。另外,老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。
⑥ 高二上册学啥了数学
上学期数学学哪些内容
对于不同的省市,不同的学校,在课程设置上都是不一样的。以下小编整理的内容仅供参考!
首先是必修5
1.解三角形
2.数列
3.不等式
然后文科是选修1-1
1.简单逻辑
2.圆锥曲线
3.导数
理科是选修2-1
1.命题逻辑
2.圆锥曲线
3.空间向量
2高二数学学习方法
高二的数学比高一数学更难,也是一个分水岭。高考中的三道难一些的大题都是高二学习的。高二既要熟悉高一讲过的内容,还要在接下来学会应用。例如高一的函数知识,高二的导数知识就需要应用函数的思想。
高二的新知识中,立体几何知识,对学生的思维要求很高,主要考查学生的空间想象能力,后面的解析几何对学生的能力要求很高,做题速度,运算也是考察的方向,高二的知识难度和计算量都比高一大很多,必须快速进入高二的学习,这样后面的学习才能游刃有余!
3高二数学学习注意事项
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
⑦ 新教材高二上学期数学内容是什么
高二数学必修和和选修内容:
第一部分:不等式
1、选修4-5:
不等式选讲
2、选修2-2:
第一章推理与证明
3、必修5:
第三章不等式
第二部分:解析几何
1、选修4-4:
坐标系与参数方程
2、选修2-1:
第三章圆锥曲线与方程
3、必修2:
第二章解析几何初步
第一部分:不等式
1、选修4-5:
不等式选讲
第一章不等关系与基本不等式
第二章几个重要不等式
2、选修2-2:
第一章推理与证明
(1)综合法与分析法
(2)反证法
(3)数学归纳法
3、必修5:
第三章不等式
(1)不等关系
(2)一元二次不等式
(3)基本不等式
点击查看:高二数学复习八大法则
第二部分:解析几何
1、选修4-4:
坐标系与参数方程
第一章坐标系
第二章参数方程
2、选修2-1:
第三章圆锥曲线与方程
(1)椭圆
(2)抛物线
(3)双曲线
(4)曲线与方程
(5)圆锥曲线的共同特征
(6)直线与圆锥曲线的交点
3、必修2:
第二章解析几何初步
(1)直线与直线的方程
(2)圆与圆的方程
(3)空间直角坐标系
⑧ 高二数学上学期第一节课要讲什么呀
看你学校的安排了。如果学习数学的顺序是必修一到必修五,那应该就是学习必修五第一章,第一课时是正余弦定理的正弦定理 有些学校是最后上必修三,那第一课就是上算法的概念。
函数的三要素:
相同函数的判断方法:①对应法则;②定义域(两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
①含参问题的定义域要分类讨论;
②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;
②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。