❶ 数学中R,Z,N,Q都代表什么意思
R:实数集合(包括有理数和无理数);Z:整数集合{…,-1,0,1,…};N表示非负整数集;Q表示有理数集。
其他表示:
N:非负整数集合或自然数集合{0,1,2,3,…}
N*或N+:正整数集合{1,2,3,…}
Q+:正有理数集合
Q-:负有理数集合
R+:正实数集合
R-:负实数集合
C:复数集合
∅ :空集(不含有任何元素的集合)
(1)数学中的q是什么意思6扩展阅读:
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义。
即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体 。
❷ 数学里Q是代表什么
数学里的Q代表有理数集即全体有理数组成的集合。
1、所有正整数组成的集合称为正整数集,记作N*,Z+或N+。
2、所有负整数组成的集合称为负整数集,记作Z-。
3、全体非负整数组成的集合称为非负整数集(或自然数集),记作N。
4、全体整数组成的集合称为整数集,记作Z。
5、全体实数组成的集合称为实数集,记作R。
概念
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。
例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S
❸ 数学中Q代表什么
Q可以代表未知数,也可以代表有理数,
Q也可以代表amount of regular repayment made per period
Q还可以成为角度如:sinQ
❹ 数学里的Q代表什么数集
Q表示【有理数集 】
Q+或Q+表示正有理数集。
Q-或Q-表示负有理数集。
有理数的英文是: Rational number
['ræʃənl'nʌmbə],但不能再用R表示了。由于任何一个有理数都是两个整数之比的结果(商),而商的英文是quotient
['kwəuʃnt],所以就用Q表示了。
❺ 数学q是什么意思 数学q的解释
1、Q是有理数集,但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
2、有理数命名由来
“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学着作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。
但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
❻ 数学里的Q代表什么数集
数学里的Q代表有理数集合。
在数学中,常使用大写的字母“Q”表示有理数组成的合集,这是数学中的常用规定,是为了在数学计算中方便书写而设定的。
常用的有理数集合经常在字母前后增加“+”和“-”分别表示正有理数集合和负有理数集合。
(6)数学中的q是什么意思6扩展阅读:
集合的特性
1、确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现 。
2、互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性:一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
❼ Q在数学上表示什么意思
r=real 实数
z=zheng 整数
在数学集合中Q表示有理数集
❽ 数学q是什么意思 数学符号都有哪些
数学符号的发明和使用比数字晚,但是数量多得多。初中阶段经常使用的就有至少20多个。它们都有一段有趣的经历。我整理了一些重要的数学符号。
Q表示的意义是:有理数集。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数,分数。
实数集,包含所有有理数和无理数的集合,通常用大写字母R表示。
18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
以上是我整理的一些数学符号,希望能帮到你。
❾ 数学里的Q代表什么数集
Q表示【有理数集 】x0dx0aQ+或Q+表示正有理数集。x0dx0aQ-或Q-表示负有理数集。x0dx0a x0dx0a有理数的英文是: Rational number x0dx0a['ræʃənl'nʌmbə],但不能再用R表示了。由于任何一个有理数都是两个整数之比的结果(商),而商的英文是quotient x0dx0a['kwəuʃnt],所以就用Q表示了。
❿ 数学中Q表示什么。
N 自然数 Q 有理数 Z. 整数 R 实数
希望对你能有所帮助。