❶ 数学中∑是什么符号
基本信息
在数学中,我们把它作为求和符号使用。
在物理中,我们把它的小写字母σ,用来表示面密度。(相应地,ρ表示体密度,η表示线密度)
∑ 写法
数学符号
概述
大写Σ用于数学上的总和符号,比如:∑Pi,其中i=1,2,...,T,即为求P1 + P2 + ... + PT的和。小写σ用于统计学上的标准差。西里尔字母的С及拉丁字母的S都是由Sigma演变而成。
也指求和,这种写法表示的就是∑j=1+2+3+…+n。
详解与应用
1、∑符号表示求和,∑读音为sigma,英文意思为Sum,Summation,就是和。
∑用法举例
用∑表示求和的方法叫做Sigma Notation,或∑ Notation。它的小写是σ,在物理上经常用来表示面密度。(相应地,ρ表示体密度,η表示线密度)
其中i表示下界,n表示上界, k从i开始取数,一直取到n,全部加起来。
∑ i 这样表达也可以,表示对i求和,i是变数
3、n可以小于i
【没有上下标时,就表示该数或该符号,重复出现】
例如:
100 ←上界 n
∑ i = 1+2+3+4+5+···+100
i=1↘下界 i
200
∑ i = 5+6+7+8+9+......+200
i=5
500
∑ i= 10+11+12+13+14+......+500
i=10
444
∑ Xi = X1+ X2+ X3+ X4+......+ X444
i=1
50
∑ i = 1 + 2 + 3 + 4 +......+ 50 = 1275
i=1
70
∑ iX=X+2X+3X+4X+...+70X=2485X
i=1
如果您懂计算机程序,这段代码可以帮助您更好地理解。在计算机代码中可以这样表示:
100
Σ i=1+2+3+...+100
i=1
VB:
Dim sum As Double,n(i As integar) As Double
Do while i﹤= n
sum = sum +n(i)
i=i+1
Loop
C++:
#include <bits/stdc++.h>
using namespace std;
int n=100,i=1,sum=0;//n表示要加到几;i表示从几开始加;sum表示累加的答案
int main(){
for(;i<=n;++i){//循环,从i(1)加到n(100),i每次加
❷ 数学中都有哪些符号都代表什么意思
∈是集合中的符号,表示属于关系,A∈B,表示集合A中的元素都在集合B的里面。tan是三角函数的符号,代表正切。
❸ 数学中⊂是什么符号
数学中⊂是集合符号包含于。
包含关系(inclusionr relotion)是概念外延间关系的一种,通常即指属种关系。有时也仅仅作为真包含关系和真包含于关系的统称。一说包含关系还包括溉念外延问(或类与类间)的全同关系。
在一个随机现象中有两个事件A与B。若事件A中任一个样本点必在B中,则称A被包含在B中,或B包含A,记为“A包含于B”:A⊂B或“B包含A”:B⊃A,这时事件A的发生必导致事件B发生。
(3)是数学中是什么符号扩展阅读:
常见的数学符号:
1、大于号
表示左边的数量大于右边数量的符号。记作“>”,读作“大于”。例如9>8,表示9大于8。
2、小于号
表示左边的数量小于右边的数量的符号。记作“<”,读作“小于”。例如:8<9,表示8小于9。
3、运算符号
表示属于某一种运算的符号。例如:加号“+”,减号“一”,乘号“×”,除号“÷”。,
4、运算顺序符号
表示运算顺序的符号。例如:小括号“( )”,中括号“[ ],大括号“{ }”。运用这些符号能改变正常的运算顺序,还能表示几个数或几种运算结合在一起,所以也叫做结合符号。
5、元素与集合的关系
元素与集合的关系是属于(∈)不属于(∉)的关系。
集合与集合的关系是包含(⊂,=,⊃)不包含(⊄,⊅)。
❹ 在数学中/是什么符号
在数学中/符号有很多意思,根据不同的情境,表达的意思也是不同的,具体如下:
1、除号
例如:32/4=8 表示32除以4等于8
2、分数符号
例如:1/2 表示表示二分之一
3、或者符合
例如:a/b表示 a或者b
互联网中的斜杠“/”:
斜杠“/”是很常见的一个符号。它的位置在右 Shift 的左边,不用按 Shift 就能够输入。
斜杠之所以占据那么重要的地位,应该得益于操作系统(Unix、Dos)的流行。在命令行中,一个斜杠往往是表示着根目录,也作为目录与目录之间的分割。
其实到了互联网时代,除了 URL 中可能要用到斜杠外,其他地方很少见到它的身影,它并没有随着历史而去。在编程中,经常用到“/”和“”。
.在程序中,有时我们会看到这样的路径写法,"D:\Driver\Lan" 也就是两个反斜杠来分隔路径。事实上,上面这个路径可以用 "D:/Driver/Lan" 来代替,不会出错,写成了"D:DriverLan"就可能会出现错误。
❺ 数学中-是什么符号
在中学数学中,常见的数学符号有以下六种:
一、数量符号如3/4,圆周率π;a,x等。
二、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或-),比号(:)等。
三、关系符号如“=”是“等号”,读作“等于”;“≈”或“=”是“约等号”读作“约等于”;“≠”是“不等号”。读作“不等于”;“>”是“大于符号”,读作“大于”;“<”是“小干符号”,读作“小于”;“∥”是“平行符号”,读作“平行于”;“⊥”是“垂直符号”,读作“垂直于”等。
四、结合符号 如小括号( ),中括号[ ],大括号{ }。
五、性质符号 如正号(+)、负号(-),绝对值符号(||)。
六、简写符号 如三角形(△),圆(⊙),幂()等。
你看下把!数学中-是应该是减号!
你看下,明白没?没得话,我再解释!
这里说实在的最主要的还是方法,方法掌握了,类似的问题都能解决了!
希望我的回答对你有帮助,祝你好运!像这样的问题自己多尝试下,下次才会的!
祝你学业进步!
❻ 数学是什么符号
“+”用作加号,“-”用作减号等。
乘号曾经用过十几种,现代数学通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。
德国数学家莱布尼茨认为:“×”号像拉丁字母“X”,可能引起混淆而加以反对,并赞成用“·”号(事实上点乘在某些情况下亦易与小数点相混淆)。后来他还提出用“∩“表示相乘。这个符号在现代已应用到集合论中了。
到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。他认为“×”是“+”的旋转变形,是另一种表示增加的符号。
“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。后来瑞士数学家拉哈在他所着的《代数学》里,才根据群众创造,正式将“÷”作为除号。
❼ 什么是数学符号
数学符号一般有以下几种:(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏.(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶),微分(d),积分(∫)等.(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等.(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—” (5)性质符号:如正号“+”,负号“-”,绝对值符号“‖” (6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等.符号 意义 ∞ 无穷大 PI 圆周率 |x| 函数的绝对值 ∪ 集合并 ∩ 集合交 ≥ 大于等于 ≤ 小于等于 ≡ 恒等于或同余 ln(x) 以e为底的对数 lg(x) 以10为底的对数 floor(x) 上取整函数 ceil(x) 下取整函数 x mod y 求余数 {x} 小数部分 x - floor(x) ∫f(x)δx 不定积分 ∫[a:b]f(x)δx a到b的定积分 P为真等于1否则等于0 ∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求极限 f(z) f关于z的m阶导函数 C(n:m) 组合数,n中取m P(n:m) 排列数 m|n m整除n m⊥n m与n互质 a∈ A a属于集合A #A 集合A中的元素个数
❽ 是什么数学符号
在数学中“所有”一词,叫做全称量词,用符号“?”表示。
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb,lim),比(:),绝对值符号||,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
关系符号:
如“=”是等号,“≈”是近似符号。
“≠”是不等号。
“>”是大于符号,“<”是小于符号。
“≥”或“≮”是大于或等于符号。
“≤”或“≯”)是小于或等于符号。
“→”表示变量变化的趋势。
“∽”是相似符号,“≌”是全等号。
“∥”是平行符号,“⊥”是垂直符号。
“∝”是成正比符号,(没有成反比符号)。
“∈”是属于符号,“??”是“包含”符号等。
❾ 数学上的符号都代表什么意思
数学集合符号都有:N、N+、Z、Q、R、C等。具体介绍如下:
1、全体非负整数的集合通常简称非负整数集(或自然数集),记作N。
2、非负整数集内排除0的集,也称正整数集,记作N+(或N*)。
3、全体整数的集合通常称作整数集,记作Z。
4、全体有理数的集合通常简称有理数集,记作Q。
5、全体实数的集合通常简称实数集,记作R。
6、复数集合计作C。
(9)是数学中是什么符号扩展阅读:
1、集合,是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。
2、元素与集合的关系有:“属于”与“不属于”两种。
3、集合的运算:
(1)集合交换律:A∩B=B∩A;A∪B=B∪A。
(2)集合结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。