⑴ R是什么集合
R不但是英文字母,也是数学符号。R是一个无限集合。
r指的是半径,如圆形面积公式:R还代表集合实数集。R可以与其真子集建立双射。
其他:
R+:正实数集合。
R-:负实数集合。
R表示集合理论中的实数集,而复数中的实数部分也以此符号为代表,英文是realnumber。
*表示非零。
+表示大于等于0。
-表示小于等于0。
⑵ r代表什么数集
在数学中,R表示实数集,因实数的英文单词为Realnumber,所以实数集合用R来表示;实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应,但仅仅以列举的方式不能描述实数的整体。
1、用Q表示有理数集:
由于两个数相比的结果(商)叫做有理数,商英文是quotient,所以有理数集就用Q表示了。
2、用Z表示整数集:
这个涉及到一个德国女数学家对环理论的贡献,她叫诺特。1920年,她已引入“左模”、“右模”的概念、1921年写出的是交换代数发展的里程碑,
她是德国人,德语中的整数叫做Zahlen,于是当时她将整数环记作Z,从那时候起整数集就用Z表示了。
3、用N表示自然数集:
自然数:Naturalnumber,所以自然数集就用N表示了。
4、用R表示实数集:
实数:Realnumber,所以实数集就用R表示了。
5、用C表示复数集:
复数:Complexnumber,所以复数集就用C表示了。
⑶ R是什么数
数学上的R代表集合实数集。R+表示正实数,R-表示负实数。实数集通俗地认为,通常包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
实数集,包含所有有理数和无理数的集合,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
加法定理:
1、对于任意属于集合R的元素a、b,可以定义它们的加法a+b,且a+b属于R。
2、加法有恒元0,且a+0=0+a=a(从而存在相反数)。
3、加法有交换律,a+b=b+a。
4、加法有结合律,(a+b)+c=a+(b+c)。
完备定理:
1、任何一个非空有上界的集合(包含于R)必有上确界。
2、设A、B是两个包含于R的集合,且对任何x属于A,y属于B,都有x<;y,那么必存在c属于R,使得对任何x属于A,y属于B,都有x<;c<;y。
符合加法、乘法公理、完备定理以及序公理的任何一个集合都叫做实数集,实数集的元素称为实数。
⑷ 在数学中,N、Z、Q、R 分别代表什么呢
N全体非负整数(或自然数)组成的集合;R是实数集;Z是整数集;Q是有理数集;Z*是正整数集;N*是正整数集。
集合及运算的概念
集合:一般的,一定范围内某些确定的,不同的对象的全体构成一个集合。
子集:对于两个集合A和B,如果集合A中的任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A是集合B的子集,记作A⊆B读作A包含于B。
空集:不含任何元素的集合叫做空集。记为Φ。
集合的三要素:确定性、互异性、无序性。
集合的表示方法:列举法、描述法、视图法、区间法。
集合的分类:(按集合中元素个数多少分为:)有限集、无限集、空集。
(4)数学r集合代表什么扩展阅读:
集合的运算性质
1、A∩B=B∩A;A∩B⊆A;A∩B⊆B;A∩U=A;A∩A=A;A∩φ=φ。
2、A∪B=BUA; A⊆A∪B; B⊆A∪B;A∪U=U;A∪A=A;A∪φ=A 。
3、Cu(CuA)=A;Cuφ=U;CuU=φ;A∩CuA=φ;A∪CuA=U (摩根定律或反演律)。
4、A⊇B,B⊇A,则A=B,A⊇B,B⊇C,则A⊇C。
常用结论
1、A⊆B<=>A∩B=A;A⊆B<=>A∪B=B; A∪B=A∩B<=>A=B。
2、CuA∩CuB=Cu(A∪B),CuA∪CuB=Cu(A∩B)——德摩根律。
⑸ 数学r是什么集合
数学r是实数集集合,实数集是包含所有有理数和无理数的集合,通常用大写字母R表示。实数集的公理是:设A、B是两个包含于R的集合,且对任何x属于A,y属于B,都有x
⑹ 数学中R表示的是什么
R是拉丁字母。
在【代数学】中,表示数,表示算式。
在【几何学】中,表示点,表示圆半径。
在【集合论】中,表示实数集合。
在【无穷级数】中,表示余项。
总之,字母不象文字,使用比较随性。
⑺ r在数学中代表什么数
R代表集合实数集。
实数集是包含所有有理数和无理数的集合,通常用大写字母R表示。
R的常用子集:
1、Q。
有理数集,即由所有有理数所构成的`集合,用黑体字母Q表示。有理数集是实数集的子集。
2、N+。
正整数集就是即所有正数且是整数的数的集合,是在自然数集中排除0的集合,一直到无穷大。正整数集通常用符号N+、N*、N1、N>0表示。
3、Z。
由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。
实数集简介
通俗地认为,通常包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。
18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。
⑻ 数学中的r是什么数
数学上的R代表集合实数集。R+表示正实数,R-表示负实数。
实数集通俗地认为,通常包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。
直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
完备公理
(1)任何一个非空有上界的集合(包含于R)必有上确界。
(2)设A、B是两个包含于R的集合,且对任何x属于A,y属于B,都有x<y,那么必存在c属于R,使得对任何x属于A,y属于B,都有x<c<y。
符合以上四组公理的任何一个集合都叫做实数集,实数集的元素称为实数。