① 初一数学下册《三角形》知识点
一、三角形相关概念
1
.三角形的概念
由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形
要点
:①三条线段;②不在同一直线上;③首尾顺次相接.
2
.三角形的表示
通常用三个大写字母表示三角形的顶点,如用
A
、
B
、
C
表示三角形的三个顶点时,此三角形可记作△
ABC
,其中线段
AB
、
BC
、
AC
是三角形的三条边,∠
A
、∠
B
、∠
C
分别表示三角形的三个内角.
3
.三角形中的三种重要线段
三角形的角平分线、中线、高线是三角形中的三种重要线段.
(
1
)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的
线段叫做三角形的角平分线.
注意:
①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的
形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的
一条射线.
②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.
③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.
(
2
)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.
注意:
①三角形有三条中线,且它们相交三角形内部一点.
②画三角形中线时只需连结顶点及对边的中点即可.
(
3
)
三角形的高线:
从三角形一个顶点向它的对边作垂线,
顶点和垂足间的限度叫做三角形的高线,
简称三角形的高.
注意:
①三角形的三条高是线段
②画三角形的高时,
只需要向对边或对边的延长线作垂线,
连结顶点与垂足的线段就是该边上的高
② 画三角形,数学高手帮帮忙!!!
画一个直角等腰三角形,底边画高,怎么画?
画一个钝角等腰三角形,斜边画高,怎么画?
以底边画中垂线,垂足为圆心,底边为直径画圆。圆与中垂线的交点即直角等腰三角形的顶点。
以底边画中垂线,垂足为圆心,底边为直径画圆。圆与中垂线的两交点间的一点作为顶点都可以画出一个钝角等腰三角形。
③ 初一下册数学已知两角及其中一角的对边作三角形步骤怎么写
假设已经角AB,和边b
先把边b画好,再画出角A,再角C即是180度-角A-角B,再画出角C,已经画出了.
④ 初中数学等腰三角形的画法
初中数学尺规作图:
先选取一条线段作为所要画的等腰三角形的底边
(作中垂线)取出圆规,分别以选取的线段的两个端点为原点,以大于所选取的线段的一半长度为半径画圆,两个圆交于两点,用尺子将两个交点连起来并适当延长
在画出的直线上任意选取一点(除了该直线去选取的线段的交点),将该点与线段两端端点连起来,便画好了一个等腰三角形
⑤ 初一下册数学 说一下方法 怎么画旋转图形 如图.把△ABC绕点B按逆时针方向旋转30°,画出旋转后的三角形.
以AB为边在AB的左边做一个等边三角形。记另一个点为D,做出AD的中点E,在直线BE上取一点F使BF=BA。。。。就得到旋转后A的对应点F。。。
同样以BC为边做等边三角形得到C点的对应点H。。。
连接BHF即为所求的三角形。。。
⑥ 初一数学下册知识点汇总
学习,是每个学生每天都在做的事情,学生们从学习中获得大量的知识,下面是我整理的关于初一数学下册知识点汇总,欢迎阅读,希望能帮助到大家,谢谢!
初一数学下册知识点汇总
一、三角形的基本概念:
1、三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形。
三角形ABC记作:△ABC。
2、相关概念:
三角形的边:组成三角形的三条线段。记作:AB、AC、BC。
三角形的内角:每两条边所组成的角(简称三角形的角)。
记作:∠A、∠B、∠C
3、三角形的分类:
二、三角形三边关系:
1、三角形任何两边的和大于第三边。
几何语言:若a、b、c为△ABC的三边,则a+b>c,a+c>b,b+c>a.
想一想:这个在实际解题中该怎样应用?
2、三边关系也可表述为:三角形任何两边的差都小于第三边。
三、三角形的内角和定理:
三角形三个内角的和等于1800。
几何语言:△ABC中,∠A+∠B+∠C=1800。
四、三角形的三线:
问题1、如何作三角形的高线、角平分线、中线?
问题2、三角形的高线、角平分线、中线各有多少条,它们的交点在什么位置?
问题3、三角形的中线有什么应用?
初一数学下册知识点汇总
1.已知面积和底边长求高
回想三角形的面积公式。三角形的面积公式是A=1/2bh。
A=三角形的面积
b=三角形底边长
h=三角形底边的高
看一下你的三角形,确定哪些变量是已知的。在本例中,你已经知道了面积,可以将面积的数值代入公式中的A。你也已知底边长的大小,可以将数值代入公式中的"'b'"。如果你不知道面积或底边长,那么你只能尝试 其它 的 方法 了。
无论三角形是如何绘制的,三角形的任意一边都可以作为底边。为了更形象地展示它,你可以想象把三角形进行旋转,直到已知边长位于底部。
例如,如果已知三角形面积是20,一边长为4,那么带入得A=20,b=4。
将数值代入公式A=1/2bh,然后进行计算。首先将底边长(b)乘以1/2,然后用面积(A)除以它。运算得到的结果应该就是三角形的高!
本例中:20=1/2(4)h
20=2h
10=h
2.求等边三角形的高
回忆等边三角形的特征。等边三角形有三条相等大小的侧边,每个夹角都是60度。如果你将等边三角形分成两半,就会得到两个相同的直角三角形。
在本例中,我们使用边长为8的等边三角形。
回忆勾股定理。勾股定理将两个直角边描述为a和b、斜边为c:a2+b2=c2。我们可以使用这个定理求出等边三角形的高!
将等边三角形对半切开,并将数值代入变量a、b和c。斜边c等于原始的斜边长。直角边a的长度就变成了边长的1/2,直角边b就是所求的三角形的高。
以边长为8的等边三角形为例,其中c=8,a=4。
将数值代入勾股定理的公式,求出b2。边长c和a分别乘以自身求平方值。然后用c2减去a2。
42+b2=82
16+b2=64
b2=48
求出b2的开方值就得到三角形的高了!使用计算机的开根号计算求得Sqrt(2)。得到的结果就是等边三角形的高!
b=Sqrt(48)=6.93
3.已知边长和角求高
确定你已知的变量。如果你知道三角形的一个夹角和一条边长,如果这个角是底边和已知侧边的夹角,或是已知三条边长,你就能求出三角形的高。我们将三角形的三边称之为a、b和c,三角为A、B和C。
如果你已知三角形的三边边长,可以使用海伦公式来求出三角形的高。
如果你已知两条边长和一个角,可以使用面积公式A=1/2ab(sinC)来求解。
如果你已知三条边长也可以使用海伦公式。海伦公式分为两部分。首先,你必须求解出变量s,它等于三角形周长的一半。你可以使用这个公式:s=(a+b+c)/2求出。
例如,三角形三边长为a=4、b=3和c=5,故而s=(4+3+5)/2,也就是s=(12)/2。求出s=6。
然后使用海伦公式的第二部分。面积=sqr(s(s-a)(s-b)(s-c)。再将面积代入含有高的面积公式:1/2bh(或1/2ah、1/2ch)。
计算求出高。在本例中,就是1/2(3)h=sqr(6(6-4)(6-3)(6-5)。化简得3/2h=sqr(6(2)(3)(1),也就是3/2h=sqr(36)。使用计算器计算开方,得到3/2h=6。因此,使用边长b作为底边,得出,三角形的高等于4。
如果已知一条边长和一个夹角,使用两边和一角的面积公式来求解。用三角形面积公式1/2bh来代替上述公式中的面积。公式就变成了1/2bh=1/2ab(sinC),化简得到h=a(sinC),这样可以消除一条未知边长的变量。
根据已知变量来求解等式。例如,已知a=3、C=40度,代入公式得“h=3(sin40)。使用计算器来计算等式,得到高h约等于1.928。
初一数学下册知识点汇总
从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线(bisectorofangle).三角形三个角平分线的交点叫做内心.
角平分线的性质
1.角平分线上的一点到角的两边距离相等.2.角的内部到角的两边距离相等的点在角的平分线上.(逆运用)三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线.三角形的角平分线不是角的平分线:一个是线段,一个是射线.三角形角平分线有个有趣的性质:三角形ABC中角A的平分线为AD,则AB:AC=BD:CD.三角形的三条角平分线相交于一点,该点为三角形的内心,且内心到三条边的距离相等.
3.角平分线是到角两边距离相等的所有点的集合.
中线
连接一个顶点与它对边中点的线段,叫做三角形的中线.中线的交点为重心,重心分中线2:1(顶点到重心:重心到对边中点).中线:三角形中,连结一个顶点和它所对边的中点的连线段叫做三角形的中线.中线也是线段,一个三角形有3条中线.在一个角为30°直角三角形中.60°角所对应的边上的中线为斜边的一半.在一个三角形中,其一短边为斜边的一半,且这个三角形为30°的直角三角行,那么,60°角所对的边上的中线在此三角形中有三个等量.
图形变换的简单应用
考点一、平移(3~5分)
1、定义
把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质
(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动
(2)连接各组对应点的线段平行(或在同一直线上)且相等。
考点二、轴对称(3~5分)
1、定义
把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质
(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形
把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
考点三、旋转(3~8分)
1、定义
把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
考点四、中心对称(3分)
1、定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)
1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)
2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)
3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)
初一数学下册知识点汇总相关 文章 :
★ 初一数学下册基本知识点总结
★ 初一数学下册知识点
★ 初一数学下册知识点归纳总结
★ 初一下期数学知识点总结
★ 初一下册数学预习方法以及知识点汇总
★ 初一数学知识点归纳与学习方法
★ 初一下册数学重点知识点总结归纳
★ 初一数学下册知识点总结
★ 初一下数学知识点归纳
★ 初一数学课本知识点总结
⑦ 七下1.6数学,用尺规作三角形怎么画,
有三种作法,1、已知两边和夹角作三角形,可先作角,然后在角的两边截取已知线段。
2、已知两角和夹边作三角形,可先作线段,然后以线段的端点作已知角。
3、已知三边作三角形,先作一条线段等于已知线段,以两个端点为圆心,另外两条线段为半径画弧,两弧的交点和端点连接。