导航:首页 > 数字科学 > 数学拓扑是什么

数学拓扑是什么

发布时间:2023-01-07 06:14:22

㈠ 拓扑是什么

拓扑
拓扑学的由来

几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。

在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。

哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。

1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。

在拓扑学的发展历史中,还有一个着名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。

根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。

着名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。

四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”

1872年,英国当时最着名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,着名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。

进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。

上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。

什么是拓扑学?

拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。

拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。

举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。

拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。

在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。

在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。

应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。

直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。

我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。

拓扑变换的不变性、不变量还有很多,这里不在介绍。

拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。

二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。

因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。

拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。

拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用

英文 topology 的音译.
拓扑学就是以空间几何的形式来表现事物内部的结构,原理,工作状况等.
比如你的计算机吧,学过搜索算法吧(广度优先(breath-first)和深度优先(depth-first, 不知道中文译的对不对)算法).你在分析的时候不是把所有的状态画成一个树状表,然后来看一步步怎样查找的么.这就是运用拓扑逻辑的方法. 当然,从这里你就可以看到,拓扑都在处理离散的状态.
说白了,系统逻辑流程图也是拓扑图.
听起很深奥,很玄,其实常常用到.

㈡ 拓扑是什么意思

词语解释:

拓扑tuò pū

1.涉及从严格定量测量中抽象出来的各种对象之间的关系的。

topological;

2.在同胚下不变性质的或在包含于同胚下不变性质的。

网络解释:

拓扑

拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。

拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。

拓扑造句

将一种三相四桥臂逆变器的拓扑结构应用于动态电压恢复器主电路。

在实际应用中,这些新的拓扑可以减少开关损耗,提高效率。

现在在拓扑图上您已经记录了目录程序。

例如,您可以创建一个复杂的部署拓扑图,在不同的层上管理复杂的关系,或者您可以使用层来显示一种设计方案随着时间的变化。

旋转动力学理论是以辨证逻辑和心理学理论为指导,微分拓扑为工具建立起来的创新计算的统一理论框架。

㈢ 拓扑是什么可以讲简单点吗(数学)

拓扑的数学定义简单的说就是: 设X是一个非空集合。X的一个子集族τ称为X的一个拓扑,如果它满足: (1)X和空集{}都属于τ; (2)τ中任意多个成员的并集仍在τ中; (3)τ中有限多个成员的交集仍在τ中。 定义中的三个条件称为拓扑公理。条件(3)可以等价的换为τ中两个成员的交集仍在τ中。 称集合X连同它的拓扑τ为一个拓扑空间,记作(X,τ)。 称τ中的成员为这个拓扑空间的开集。 从定义上看,给出某集合的一个拓扑就是规定它的哪些子集是开集。这些规定不是任意的,必须满足三条拓扑公理。 一般说来,一个集合上可以规定许多不相同的拓扑,因此说到一个拓扑空间时,要同时指明集合及所规定的拓扑。在不引起误解的情况下,也常用集合来代指一个拓扑空间,如拓扑空间X,拓扑空间Y等。
满意请采纳

㈣ "拓扑"是什么意思

拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。

拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。

(4)数学拓扑是什么扩展阅读

例子

1、欧几里德空间在通常开集的意义下是拓扑空间,它的拓扑就是所有开集组成的集合。

2、设X是一个非空集合。则集合t:{X,{}}是X的一个拓扑。称t为X的平凡拓扑。显然(X,t)只有两个开集,X和{}。

3、设X是一个非空集合。则X的幂集T=2^X也是X的一个拓扑。称T为X的离散拓扑。显然X的任意子集都是(X,T)的开集。

4、一个具体的例子。设X={1,2}。则{X,{},{1}}是X的一个拓扑,{X,{},{2}}也是拓扑,{X,{},{1},{2}}是拓扑(由定义可知)。

㈤ 拓扑是什么意思

拓扑应为拓扑学,是由几何学与集合论里发展出来的学科,可以理解为研究空间、维度与变换等概念的一门理论科学。简单的说,拓扑学是研究连续性和连通性的一个数学分支。

其定义为:拓扑学是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的学科。形式上讲,拓扑学主要研究“拓扑空间”在“连续变换”下保持不变的性质。

拓扑学在研究物体几何形状的改变时,只考虑物体间的位置关系而不考虑它们的形状和大小。

在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,圆和方形、三角形的形状、大小不同,但在拓扑变换下,它们都是等价图形;足球和橄榄球,也是等价的。因为从拓扑学的角度看,它们的拓扑结构是完全一样的。


而游泳圈的表面和足球的表面则有不同的拓扑性质,比如游泳圈中间有个“洞”。在拓扑学中,足球所代表的空间叫做球面,游泳圈所代表的空间叫环面,球面和环面是“不同”的空间。

比较着名的拓扑学问题有:一笔画问题、地图的四色问题、莫比乌斯面、克莱因瓶等。

拓扑学已经应用于物理学、化学、生物学、语言学等方面,甚至应用于经济学。

克莱因瓶

㈥ “拓扑”是什么意思

“拓扑”是研究几何图形或空间的一个学科。

阅读全文

与数学拓扑是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1011
一氧化碳还原氧化铝化学方程式怎么配平 浏览:849
数学c什么意思是什么意思是什么 浏览:1371
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1351
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:836
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1453
数学中的棱的意思是什么 浏览:1017