A. 函数的形成与发展历史(高一数学)
函数概念的发展历史
1.早期函数概念——几何观念下的函数
十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。
1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。
2.十八世纪函数概念——代数观念下的函数
1718年约翰•贝努利(Bernoulli Johann,瑞,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。
1755,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”
18世纪中叶欧拉(L.Euler,瑞,1707-1783)给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。”他把约翰•贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。不难看出,欧拉给出的函数定义比约翰•贝努利的定义更普遍、更具有广泛意义。
3.十九世纪函数概念——对应关系下的函数
1821年,柯西(Cauchy,法,1789-1857) 从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限。
1822年傅里叶(Fourier,法国,1768——1830)发现某些函数也已用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。
1837年狄利克雷(Dirichlet,德,1805-1859) 突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受。这就是人们常说的经典函数定义。
等到康托(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象。
4.现代函数概念——集合论下的函数
1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了。
1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”
术语函数,映射,对应,变换通常都有同一个意思。
但函数只表示数与数之间的对应关系,映射还可表示点与点之间,图形之间等的对应关系。可以说函数包含于映射。
B. 函数表达式是什么
函数表达式是用一个数学等式把x、x的关系表示出来,也称为函数关系式、函数解析式。
函数解析式,是函数表达方式。函数与函数解析式是完全不同的两个概念。
函数是指两个变量A与B之间,如果A随着B的每个值,都有唯一确定的值与之对应,那么A就是B的函数。
从对应角度理解,有两种形式:
1、一对一,就是一个B值对应一个A值,反之,一个A值也对应一个B值(当然,此时B也是A的函数)。
2、一对多,就是多个B值对应一个A值。(此时一个A值对应多个B值,所以B不是A的函数)。
C. 数学函数是什么
函数定义在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。函数是数学中的一种对应关系,是从非空数集A到实数集B的对应。简单地说,甲随着乙变,甲就是乙的函数。精确地说,设X是一个非空集合,Y是非空数集 ,f是个对应法则 , 若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应 , 就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合 为其值域(值域是Y的子集),x叫做自变量,y叫做因变量,习惯上也说y是x的函数。对应法则和定义域是函数的两个要素。函数相关概念自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。因变量(函数),随着自变量的变化而变化,且仅当自变量取唯一值时,因变量(函数)有且只有唯一一值与其相对应。几何含义函数与不等式和方程都存在着联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量是图像与X轴交点;从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“ >”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。D. 函数概念的形成
函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。本文拟通过对函数概念的发展与比较的研究,对函数概念的教学进行一些探索。
1、函数概念的纵向发展
1.1 早期函数概念——几何观念下的函数
十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。
1.2 十八世纪函数概念——代数观念下的函数
1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。
18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号。欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。
1.3 十九世纪函数概念——对应关系下的函数
1822年傅里叶(Fourier,法,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次。1823年柯西(Cauchy,法,1789-1857)从定义变量开始给出了函数的定义,同时指出,虽然无穷级数是规定函数的一种有效方法,但是对函数来说不一定要有解析表达式,不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限,突破这一局限的是杰出数学家狄利克雷。
1837年狄利克雷(Dirichlet,德,1805-1859)认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,简明精确,以完全清晰的方式为所有数学家无条件地接受。至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义。
等到康托尔(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象(点、线、面、体、向量、矩阵等)。
1.4 现代函数概念——集合论下的函数
1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用“序偶”来定义函数。其优点是避开了意义不明确的“变量”、“对应”概念,其不足之处是又引入了不明确的概念“序偶”。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”,即序偶(a,b)为集合{{a},{b}},这样,就使豪斯道夫的定义很严谨了。1930年新的现代函数定义为,若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。
函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式,但这并不意味着函数概念发展的历史终结,20世纪40年代,物理学研究的需要发现了一种叫做Dirac-δ函数,它只在一点处不为零,而它在全直线上的积分却等于1,这在原来的函数和积分的定义下是不可思议的,但由于广义函数概念的引入,把函数、测度及以上所述的Dirac-δ函数等概念统一了起来。因此,随着以数学为基础的其他学科的发展,函数的概念还会继续扩展。
E. 函数的形成与发展是什么
函数的形成与发展介绍如下。
1、在笛卡尔引入变量以后,变量和函数等概念日益渗透到科学技术的各个领域。纵览宇宙,运算天体,探索热的传导,揭示电磁秘密,这些都和函数概念息息相关。正是在这些实践过程中,人们对函数的概念不断深化。
2、最早提出函数概念的,是17世纪德国数学家莱布尼茨。最初莱布尼茨用函数一词表示幂,如x,x2,x3都叫函数。以后,他又用函数表示在直角坐标系中曲线上一点的横坐标、纵坐标。
3、1718年,莱布尼茨的学生、瑞士数学家贝努利把函数定义为:由某个变量及任意的一个常数结合而成的数量。意思是凡变量和常量构成的式子都叫做的函数。贝努利所强调的是函数要用公式来表示。
4、1755年,瑞士数学家欧拉把函数定义为:如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。
5、1821年,法国数学家柯西给出了类似现在中学课本的函数定义:在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。在柯西的定义中,首先出现了自变量一词。
6、1834年,俄国数学家罗巴切夫斯基进一步提出函数的定义:函数是这样的一个数,它对于每一个都有确定的值,并且随着一起变化。函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法。函数的这种依赖关系可以存在,但仍然是未知的。
7、1837年,德国数学家狄里克雷认为怎样去建立与之间的对应关系是无关紧要的,所以他的定义是:如果对于x的每一个值,总有一个完全确定的y值与之对应,则y是x的函数。