A. 如何上好小学数学整理和复习课
一、引导自主复习,注重“理”
在复习课的教学中,可以放手让学生采用不同的方法,独立自主地、自由自在地操作、思考与整理,全身心地投入探究数学知识的形成过程。然后引导学生对各自独创的结果进行分析与综合的同时,运用“比较”异同这一思维方式逐步构建相同的结果,在学生体验、交流、反思、辩论中寻求一种最佳的结果。通过“存异——求同——求佳”的操作策略,学生的认知结构也得到充分的发展,即达到“感悟——理解——升华”,促使学生从“无序”思维到“有序”思维再到“科学”思维方式的发展。虽然学生在“求异”过程中所使用的方式和方法,可能是正确和简捷的,也可能是繁琐错误和无序的,但他们这种别出心裁的方法是自己独创的,是一种不可多得的“创新”行为。例如,在复习“平面图形的分类”时,课始老师布置学生回忆在小学阶段学过的平面图形有哪些?提示学生可以用图或表的形式表示它们的内在联系,有两个小组通过自我学习、自我整理、合作讨论参与,最后以自己独特的方式梳理成如下的知识网络。
二、指导复习方法,注重“建”
在复习课的教学中,要针对知识的重点、学习的难点、学生的弱点,引导学生按一定的标准把有关知识、概念作纵向、横向联系归类、整理,使之“竖成线”、“横成片”,达到所复习的知识要点条理清晰,知识结构脉络分明。教给学生整理与归类的方法,使学生在获得比较系统的知识的同时,不断构建和完善认知结构,极大地提高学生的整体素质。
在复习《平面图形的面积和周长》时,在自己课前整理的基础上,学生们通过小组合作交流,很多组都能够整理出下面的网络图。很好地再现了面积的公式推导中各个平面图形的关系。
复习课为我们提供了重新组建学生认知结构的时机,我们必须充分运用,而且高度重视在复习课中对学生所学知识、认识事物的方法和分析,解决问题的思维方式进行高层次的归纳、概括、提炼,使新、旧知识完美融合为一体,达到构建学生良好的数学认知结构的目的,从而有效地提高学生的数学素质。
三、重视生活联系,注重“用”
学习数学要以一定的经验为背景,复习课的设计应该为学生提供有利于学生进一步理解数学、探索数学的情境。要给学生充分的机会,通过对实际问题的感知、操作等活动来认识数学,让学生“做数学”比简单地教给数学知识更重要。让学生“做数学”的途径之一就是设计与学生生活实际密切相关的数学情境。
例如,复习“空间与图形”的内容,可设计这样一道综合题:城北新区有一块正方形空地,面积是3600平方米。(1)如果要在这块空地上围出一个最大的圆,并铺上草坪,这块草坪的面积有多大?(2)在这块空地上设计一片花圃,使花圃的面积占正方形面积的25%。请你设计方案。这样联系生活实际,把空间与图形的知识与百分数知识相联系,让学生设计方案,有利于考查学生综合知识的应用能力及整体设计思想、优化策略、创新精神和审美意识。
总之,习题的设计在内容上要“全”,在形式上要“精”,在方法上要“活”,在时间上要“足”。教师要在课堂上给学生充分的演练机会,为学生的评价提供丰富的资源,让每一位学生都能享受到成功的喜悦。
四、注重拓展延伸,注重“延”
在复习课中精心设计开放性、综合性的习题,给学生提供一个能够充分表现个性、激励创新的空间,让学生自己动手、动脑、动口,引导和帮助学生用所学的数学知识去发现问题和解决问题,把知识结构转化为认知结构,促进学生智力、能力的发展。
例如,在复习分数(百分数)应用题时,安排如下一道开放题,“李阿姨于2006年6月20日将5000元存入银行定期5年,可今天(2009年6月20日)李阿姨的丈夫突然病重住院,急需5000元钱交住院费,可银行规定,定期存款不到期提前支取按活期计息。李阿姨该怎么办?”
教有法而无定法。复习课的梳理不一定完全在课上,比如我们现在经常运用的让学生办数学小报、写数学日记进行梳理;然后在课上,孩子们可以对数学小报,数学日记进行展评。从中相互借鉴,相互学习。比如高年级可以让学生根据单元知识,或者是需要复习的知识,让学生画一些树形图,把知识进行梳理,并内化自己的已有认知当中。六年级的学生还可以采用小老师授课制,由学生来当老师。当然了这时教师不是闲了而是更忙了。
B. 必读小升初数学知识点梳理
必读小升初数学知识点梳理
一、关于数学命题趋势的分析
纵观各级各类考试,数学命题有以下三个方面的趋势:
(一)综合性 主要考查学生的"双基",以及知识的综合运用能力。
如:小学数学的分数、小数的四则混合运算。运算中要注意:小数的相加、相减、相除三类运算中的小数点对齐问题,乘法运算中的乘数与被乘数共有几位小数,所得的积就有几位小数,不够时要补零。分数的加减运算要注意通分(先找出分母的最小公倍数,再将分子、分母同时扩大相同的倍数。)带分数相加减,应将整数、分数部分分别相加减,然后将所得的结果进行合并,如分数部分不够减,要考虑向整数部分"借"。分数运算中"约分"的思想是化繁为简的理论基础,要将它和关系"重新组合"、"拆项"等结合起来,加以训练。
(二)延续性 所谓"延续性"是指相关数学知识在以后的学习中是否会重新"遭遇"。从数学体系的角度来看,"函数"的思想、"立体感"的建立等都是非常重要的。这些内容在小学数学中往往表现为应用题的列式,圆、圆柱、圆锥、长方体、正方体的识图、运算与转化等。
(三)变通性 所谓"变通性"是指学生对相关数学知识的灵活运算的能力。常见的有"发现新规律,定义新运算的能力"、"优化设计(最大、最小)的能力"、"分析推理(执因索果)的能力"、以及"公式的变形与迭代(包括单位换算、数的进制、手表问题等)的能力"。
二、关于数学应用问题的归类
小学数学的应用题往往是概念、公式的应用。
小学数学常用的一些概念、公式,应加以记忆。如:存入银行的钱叫做本金;取款时银行多付的钱叫做利息;购买建设债券和储蓄在实质上是一样的,是支援国家建设的另一种方式,只是债券的利率一般高于定期储蓄;"一成"就是十分之一,改写成百分数就是10%;表示两个比相等的式子叫做比例;比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项;在比例里,两个外项的积等于两个内项的积(比例的基本性质);比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例,解比例要根据比例的基本性质来解。图上距离和实际距离的比叫做比例尺;一种量变化,另一种量也随着变化,这两种量是两种相关联的量;圆的周长公式:C=2Π r或C=ΠD;圆柱的侧面积=底面周长×高;长方体的体积=长×宽×高=底面积×高;长方形的面积=长×宽; 正方形的面积=边长×边长;平行四边形的面积=底×高;三角形的面积=1/2 ×底×高;梯形的面积:= 1/2(上底+下底)×高;圆的面积=∏×R×R;长方体、正方体和圆柱的体积公式可以统一写成:"底面积×高"等等。
(一)分数、百分数的应用题 "分率(百分率、利率、折扣)"的概念是解题的关键,其中标准量"1"的选取是解题突破口。
(二)工程问题 工程问题要弄清工作量、工作效率、工作时间三者之间的关系:工作量=工作效率×工作时间;工作效率= 工作量/工作时间;工作时间=工作量/工作效率 ;总工作量=各分工作量之和
(三)行程问题 从表层意义上是考查学生对路程、时间、速度三者关系的认识,从深层次的角度分析,实际上是检查学生的变通能力,因为需要考虑的不仅仅是"路程=时间×速度;时间=路程 /速度;速度=路程/时间 ",往往还涉及到时间、地点和方向等诸多要素,因此,解这类题目的关键是认准哪些是"变化的条件",如何在解题中准确运用"不变的公式"。
(四)浓度问题 (不作重点要求) 这类题目要求了解的关系式: 溶液=溶质+ 溶剂 ;浓度=溶质 / 溶液;溶液= 溶质 / 浓度;溶质= 溶液×浓度
三、简单的几何问题
面积、体积问题 主要考虑以下内容:
平行四边形面积计算公式怎样得到的?三角形和梯形面积计算公式怎样得到的?圆的面积计算公式呢?思索正方形面积是怎样计算的?为什么?
提示:我们在得到长方形面积计算公式后,可以通过剪、拼等方法,对图形进行转化,从而得出相应图形的面积计算公式。
求表面积就是求立体图形的什么?(所有面的面积总和)长方体表面积是怎样算的?这类题还有什么简便的方法?圆柱体表面积是怎样算的?
提示:立体图形的表面积是所有面的面积的总和,所以要先求各部分的面积,然后相加。长方体和圆柱体的表面积都可以用侧面积加两个底面积。
求长方体和圆柱的体积有什么相同的地方?
提示:长方体其实也是一个柱体,长方体和圆柱体的体积,其实都是用底面积乘以高。
圆柱(锥) 是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的。要认识圆柱的`底面、侧面和高;认识圆锥的底面和高。要知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
四、简单的统计
简单的统计表、统计图、还学过求平均数和求百分数等都是统计初步知识。
在统计工作中除了对数据进行分类整理用统计表来表示以外,有时还可以用统计图来表示。常见统计图有以下三类:条形统计图;折线统计图;扇形统计图。
要认识统计图,并明确统计图的特点和作用,经历"收集、整理数据和用统计图表示数据、整理结果"过程。能根据绘制出的统计图,分析数据所反映的一些简单事实,能作出一些简单的推理与判断,进一步认识统计是解决实际问题的一种策略和方法。在学习统计知识的同时,感受数学与生活的联系及其在生活中的应用。
求平均数的关键,是要先弄清被平均的数量是什么,总数是多少;以及要求的平均数是按照什么平均的,要平均分成多少份等等。
掌握一些与百分数有关的概念,如:发芽率,出勤率,成活率,利息等。了解有关利息的初步知识,知道"本金"、"利息"、"利率"的含意,会利用利息的计算公式进行一些有关利息的简单计算。理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。税收的计算也是百分数的一种具体应用。了解什么是个人所得税,怎样计算个人所得税? 什么是成活率?它的计算公式是什么?
;C. 如何引导学生进行数学知识梳理
一、让学生自我梳理,合作学习,形成自己的知识网。
课前放手让学生自我梳理,课内交流完善,使知识条理化、系统化,形成良好的知识网络,这是整理最基本的要求和目的。由于课题本身所容纳的知识点的不同,有些知识在学生头脑中很快就会再现,而有些知识可能被遗忘,因而首先要让学生自己通过回忆再现,建立记忆表象,同时结合读书,搜集与课题有关的知识,清楚每一知识点的意义,这是梳理知识的重要基础。其次让学生合作交流,每位学生在小组里交流自己整理的思路,在相互补充的过程中完善知识体系,以文字、图表等表现形式将所学过的知识梳理总结,形成网络。整个过程要求教师放手让学生自我梳理或通过小组合作完成。要充分发挥学生的主体作用,通过交流,弄清知识之间的联系,构建知识体系,使每个人的经验得到共享,激发学生整理知识的热情。教师要注意观察,适时、适当引导、点拨学生,使学生从不同角度梳理知识,发展学生的思维,提高复习效率。
二、典型练习,寻找发现规律,引导学生进行整理。
让学生初步进行典型练习,将零碎的知识系统梳理、综合,从而上升为可感受的规律和学习方法。教师在这一环节要把握要领,精讲善导,生生、师生合作,在练习的基础上引导学生采用表格、提纲或图等形式把有关的知识、规律和方法整理出来。比如:列方程解应用题,我们可归纳几类,然后教会学生找等量关系的方法,这样就可把内容繁杂的知识归为几类,以一般的规律性知识去对待多种题目,从而把课本从厚教到薄。
三、通过“一题多解,多题一解”理清知识点。
数学知识是一个有机的整体,各部分知识之间有着内在联系,设计的问题情境要对所有知识有所兼顾。有些题目,可以从不同的角度去分析,得到不同的解题方法。“一题多解、多题一解”可以培养分析问题的能力,灵活解题的能力。不同的解题思路,列式不同,结果相同,收到殊途同归的效果,给学生以启迪,开阔解题思路。例如:有些应用题,虽题目形式不同,但它们的解题方法是一样的,故在复习时,要从不同的角度去思考,这样才能使所学知识融会贯通,提高解题灵活性。在方法的对比中,寻求共性,有效提高学生综合应用知识解决问题的能力。
整理意识和整理能力是一种数学习惯,帮助学生把知识系统化、清晰化,让学生学会从数学系统化的角度认识世界、观察世界,最后形成数学知识和生活的融会贯通,学有所用,从整理知识到随时整理自己的“生活”,才能使学生在原有知识基础上进行高层次的再学习,更好地体现学习的整体性、序列性。
D. 数学中知识点归类的好处有哪些
数学知识点的归纳有以下好处:
1,知识点归类能让你清楚的知道每个知识点的用途,以及它们之间的内在联系。
2,他能帮助你准确把握书本中的重点,难点。加深对各个知识点的理解和应用。
3,特别在做完一个题后要学会归纳这个题都用了哪些知识点,以方便下次遇到这类题时,能够做出迅速的判断用哪些知识点去解决这个问题。
E. 如何让孩子学会把数学教材中,最难的数学知识梳理出来
数论模块从分类上分为整除的数论和余数的数论。整除的数论我们在五年级暑假之前学完了整除特征;暑假学习了质数合数进阶、简单的学习了大数翻倍法找最小公倍数的方法。