1. 初中数学找规律题形的方法和解题思路是什么
找规律题形的方法:
基本方法--看增幅:
(1)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较;
(2)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列);
(3)增幅不相等,但是增幅同比增加,即增幅为等比数列;
(4)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
解题思路:
(1)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
(2)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。
(3)看例题;
(4)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。
(5)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
2. 初中找规律的数学题技巧
初中找规律的数学题技巧:
找规律题实质:找出数列中的数与其序号之间的对应关系。
1、等差型。
将每一个数与其前一个数相比较,如果差值恒相等,为一个常数(通常称为公差),则第n个数可以表示为an=a1+(n-1)d,其中a1为数列的第一个数,d为差值,(n-1)d为第一位到第n位的差值总和。
例1、3、 6、 9、12...... 求第n位数。
解;从第二个数起,每个数都比前一个数增加3,差值为3,所以第n位数是:3+(n-1)×3=3n。
2、增幅为等差。
即将每一次增幅与前次增幅相比较,增幅差值恒相等,为一个常数。
3、等比型。
将每一个数与其前一个数相比较,如果比值恒相等,为一个常数,则第n个数可以表示为an=a1qn-1,其中a1为数列的第一个数,q为比值。
例5、3、 6、 12、24...... 求第n位数。
解;从第二个数起,每个数与前一个数的比值恒为2,所以第n位数是:3×2n-1。
4、增幅为等比。
即将每一次增幅与前次增幅相比较,增幅比值恒相等,为一个常数。
例6、2、3、5、9、17......,求数列的第8项是多少?
解:从第二束起,每个数与前一个数的增幅分别为1、2、4、8...... 所以第6个数为17+24=33,第7个数为33+25=55,第8个数为55+26=119。
5、平方型:数列为每一项序号的平方、序号的平方 + 常数、序号的平方 - 常数。
例7、已知数列的前几项为2、5、10、17.....,求数列的第n项为多少。
解:由观察可知数列的前几项分别等于12+1、22+1、32+1、42+1,那么由此可推第n项为n2+1。
例8、观察下列个数:0、3、8、15、24......试按此规律写出第100个数。
解:由观察可知数列的前几项分别等于12-1、22-1、32-1、42-1,那么由此可推第n项为n2-1,
第100个数即为:1002-1 = 9999。
6、指数。
例9、观察下列个数:1、2、4、8、16......试按此规律写出第11个数。
解:由观察可知数列的前几项分别等于20、21、22、23......那么由此可推第n项为2n-1,
第11个数即为:210= 1024。
3. 数学找规律题有什么技巧
你可以先把题给你的已知条件先写下来(竖着写),思路清晰,
再在序号后面依次写上已知的前面几个条件.
如: 找规律 8 17 25 33……
(序号)1 (已知条件)8
2 17=8×2+1
3 25=8×3+1
4 33=8×4+1
...
... (发现规律了,8×序号+1)
n 8×n+1
反正以后你把规律都竖着写,
切记序号一定得写.
希望我的方法对你有用,谢谢
4. 初一数学找规律经典题技巧解析是什么
数字找规律类型总结:
在实际解题过程中,根据相邻数之间的关系分为两大类:
(1)相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:相邻两个数加、减、乘、除等于第三数;相邻两个数加、减、乘、除后再加或者减一个常数等于第三数;前一个数的平方等于第二个数;前一个数的平方再加或者减一个常数等于第二个数;前一个数乘一个倍数加减一个常数等于第二个数。
(2)数据中每一个数字本身构成特点形成各个数字之间的规律
数据中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成;每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n;数据中每一个数字都是n的倍数加减一个常数;以上是数字推理的一些基本规律,必须掌握。但掌握这些规律后,这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。
规律型--数字的变化类解题基本技巧:
(1)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
(2)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。
(3)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(1)、(2)、技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来。
(4)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
(5)同技巧(3)、(4)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(6)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
5. 初一数学找规律题技巧
基本方法: (1)从具体的.实际的恩提出发,观察各个数量的特点及相互之间的变化规律。 (2)由此及彼,合理联想,大胆猜想 (3)善于类比,从不同事物中发现相似或相同点; (4)总结规律,得出结论,并验证结论正确与否; (5)在探索规律的过程中,要善于变化思维方式,做到事半功倍 技巧平台: 探索规律是一种思维活动,及思维从特殊到一半的跳跃,需要有一定的归纳与综合能力。当以知的数据有很多组时,需要仔细观察,反复比较,才能准确找出规律。需用到的数学方法有:分类讨论法.转化法.归纳法. (1)通过观察.分析.综合.归纳.概括.推理.判断等一系列探索活动,解答有关探索规律性问题的特点是问题的结论或条件不直接给出,需要逐步确定需要的结论和条件。 (2)解答这类题的关键是认真审题,掌握规律.合理推测.认真验证,从而得出问题的正确结论。
6. 数学中找规律题的技巧
我为大家整理了找规律题的一些做法,大家跟随我一起来学习一下吧。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
1.如增幅相等(实为等差数列):对每个数和它的前一个数进行比较;
2.如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列);
3.增幅不相等,但是增幅同比增加,即增幅为等比数列;
4.增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
找规律是小学数学和中学数学教学的基本技能,目的是让学生发现、经历、探究图形和数字简单的排列规律,通过比较,从而理解并掌握找规律的方法,培养学生初步的观察、操作、推理能力。
以上是我整理的有关找规律题的知识,希望对大家有所帮助。
7. 小学找规律题的技巧
下面是找规律题常见的4种解题方法。
一、标序号
我们把已知的数和对应的序列号放在一起观察、比较,常见的有等差数列。
二、公因式法
把给出的数分成最小公因式相乘,观察是否与n,或2n、3n有关。
三、第一位数法
所给的数同时减去、加上,或乘以,或除以第一位数,成为新数列,再找出与序列号的关系,可发现规律。
四、奇位、偶位数字分开
把奇数位置与偶数位置的数分别列出来,成为两个数列,再找出规律。
找规律填数是小学数学常考的题型,主要考察学生的观察能力、思维能力和运算能力。
要想解答这类问题,一定要学会观察、发现问题的特点和变化规律。
怎么才能把数学学好呢?第一步、先让孩子复习理解所有小学学过的数学知识点,公式,定 律 ,把这些重要的知识点梳理出来,归纳汇总在一起, 然后逐渐的理解吃透这些公式知识点:
第二步、把整个小学阶段的数学运用题分类整理以后遇到同样的题型孩子就会做了, 实际上整个小学数学的应用题,奥数题只有32种, 只要把这32种应用题奥数题全部弄懂吃透,孩子的数学肯定优秀。
8. 数学规律题解题技巧
数学是各式各样的证明技巧。接下来我为你推荐数学规律题解题技巧,一起看看吧!
数学规律题解题基本方法——看增幅
(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。
例:4、10、16、22、28„„,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2
(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的总增幅;
3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17„„,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:
[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位数是:2+ n2-1= n2+1
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
数学规律题解题基本技巧
(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是 。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。
序列号: 1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。
例如:1,9,25,49,(),(),的第n为(2n-1)2
(三)看例题:
A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............即:n3+1
B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关 即:2n
(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列:
0、3、8、15、24……,
序列号:1、2、3、4、5
分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1
(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例 : 4,16,36,64,?,144,196,… ?(第一百个数)
同除以4后可得新数列:1、4、9、16„,很显然是位置数的平方。
(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
9. 初中数学找规律题型的思路(诀窍)
初中数学找规律的题目现在出现得比较多,所以有必要掌握一定的分析方法。我以为一般分为四步去考虑:1、弄清题意,千万要仔细读懂。2、从最简单的开始,逐步找出对应数据3、分析数据关系,有时可借用图形4、根据第三步的分析,依次验证每组对应数据间的计算方法是否具有一般性,如果说有,就可写出通式来了。
10. 初中数学找规律解题方法及技巧
方法与技巧如下:
如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。
3、总体思路
从具体实际的问题出发,观察各个数量的特点及相互之间的变化规律;由此及彼,合理联想,大胆猜想;善于类比,从不同事物中发现相似或相同点;
总结规律,得出结论,并验证结论正确与否;善于变化思维方式,做到事半功倍,探索规律是一种思维活动及思维从特殊到一半的跳跃,需要有一定的归纳与综合能力,当已知的数据有很多组时,需要仔细观察,反复比较才能准确找出规律。