导航:首页 > 数字科学 > 简述三次数学危机如何形成的

简述三次数学危机如何形成的

发布时间:2023-01-09 23:27:13

❶ 数学史上三次数学危机的时间和原因

第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
第二次数学shu危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机
第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。

❷ 数学史上三次危机分别是,数学史上第三次数学危机

1.数学发展史上的三次危机无理数的发现:第一次数学危机:公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。

2.这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。

3.第二次数学危机:18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。

4.1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础即无穷小的问题,提出了所谓贝克莱悖论。

5.由此而引起了数学界甚至哲学界长达一个半世纪的争论。

6.导致了数学史上的第二次数学危机。

7.第三次数学危机:数学史上的第三次危机,是由1897年的突然冲击而出现的,这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。

❸ 三次数学危机分别是什么

数学发展史上的三次危机
1.毕达哥拉斯是公元前五世纪古希腊的着名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的着名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2
的诞生。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。由两千多年后的数学家们建立的实数理论才消除它。
2.第二次数学危机导源于微积分工具的使用。贝克莱一针见血地指出牛顿在对x^n(n是正整数)求导时既把△x不当做0看而又把△x当作0看是一个严重的自相矛盾,从而几乎使微积分停滞不前,后来还是柯西和魏尔斯特拉斯等人提出无穷小是一个无限向0靠近,但是永远不等于0的变量,这才把微积分重新稳固地建立在严格的极限理论基础上,从而消灭的这次数学危机!
3.十九世纪下半叶,康托尔创立了着名的集合论。1900年,国际数学家大会上,法国着名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的着名的罗素悖论。
罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。
可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。
危机产生后,数学家纷纷提出自己的解决方案。比如ZF公理系统。这一问题的解决只现在还在进行中。罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题!

❹ 数学史上的三次危机

第一次数学危机,是数学史上的一次重要事件,发生于大约公元前400年左右的古希腊时期,自根号二的发现起,到公元前370年左右,以无理数的定义出现为结束标志。这次危机的出现冲击了一直以来在西方数学界占据主导地位的毕达哥拉斯学派,同时标志着西方世界关于无理数的研究的开始。

第二次数学危机,指发生在十七、十八世纪,围绕微积分诞生初期的基础定义展开的一场争论,这场危机最终完善了微积分的定义和与实数相关的理论系统,同时基本解决了第一次数学危机的关于无穷计算的连续性的问题,并且将微积分的应用推向了所有与数学相关的学科中。

数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托尔的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。

(4)简述三次数学危机如何形成的扩展阅读:

一般来讲,危机是一种激化的、非解决不可的矛盾。从哲学上来看,矛盾是无处不在的、不可避免的,即便以确定无疑着称的数学也不例外。

数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。

❺ 数学史上的三次危机是什么

数学三大危机,涉及无理数、微积分和集合等数学概念。

1、危机一,希巴斯(Hippasus,米太旁登地方人,公元前470年左右)发现了一个腰为1的等腰直角三角形的斜边(即2的2次方根)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的着名理论。

2、危机二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻。

3、危机三,罗素悖论:S由一切不是自身元素的集合所组成,那S属于S吗?用通俗一点的话来说,小明有一天说:“我正在撒谎!”问小明到底撒谎还是说实话。罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论。

(5)简述三次数学危机如何形成的扩展阅读:

排除悖论

危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。

公理化集合系统

成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。


参考资料网络-数学三大危机

❻ 引起数学的第三次危机的根本原因是什么

数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。

悖论的产生---第三次数学危机
1897年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最着名的是罗素于1919年给出的,它涉及到某村理发师的困境。理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。
罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。于是终结了近12年的刻苦钻研。
承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。
编辑本段第三次数学危机产生的背景
第三次数学危机产生于十九世纪末和二十世纪初,当时正是数学空前兴旺发达的时期。首先是逻辑的数学化,促使了数理逻辑这门学科诞生。
十九世纪七十年代康托尔创立的集合论是现代数学的基础,也是产生危机的直接来源。十九世纪末,戴德金及皮亚诺对算术及实数理论进行公理化,推动了公理化运动。而公理化运动的最大成就则是希尔伯特在1899年对于初等几何的公理化。
公理化方法
公理化方法是现代数学最重要的方法之一,对于数学基础和数理逻辑的研究也有影响。当时也是现代数学一些新分支兴起的时期,如抽象代数学、点集拓扑学和代数拓扑学、泛函分析、测度与积分理论等学科。这些学科的发展一直与数学基础及数理逻辑的发展有着密切的关系。数学的更新与发展也对数学哲学有许多新的探讨,数学的陈腐哲学观念在当时已经几乎一扫而空了。
什么是数学危机
为了讲清楚第三次数学危机的来龙去脉,我们首先要说明什么是数学危机。一般来讲,危机是一种激化的、非解决不可的矛盾。从哲学上来看,矛盾是无处不在的、不可避免的,即便以确定无疑着称的数学也不例外。
数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。 矛盾的消除,危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。
人们的研究
人类最早认识的是自然数。从引进零及负数就经历过斗争:要么引进这些数,要么大量的数的减法就行不通;同样,引进分数使乘法有了逆运算——除法,否则许多实际问题也不能解决。但是接着又出现了这样的问题,是否所有的量都能用有理数来表示?于是发现无理数就导致了第一次数学危机,而危机的解决也就促使逻辑的发展和几何学的体系化。
方程的解导致了虚数的出现,虚数从一开始就被认为是“不实的”。可是这种不实的数却能解决实数所不能解决的问题,从而为自己争得存在的权利。
几何学的发展从欧几里得几何的一统天下发展到各种非欧几何学也是如此。在十九世纪发现了许多用传统方法不能解决的问题,如五次及五次以上代数方程不能通过加、减、乘、除、乘方、开方求出根来;古希腊几何三大问题,即三等分任意角、倍立方体、化圆为方不能通过圆规、直尺作图来解决等等。
这些否定的结果表明了传统方法的局限性,也反映了人类认识的深入。这种发现给这些学科带来极大的冲击,几乎完全改变了它们的方向。比如说,代数学从此以后向抽象代数学方面发展,而求解方程的根变成了分析及计算数学的课题。在第三次数学危机中,这种情况也多次出现,尤其是包含整数算术在内的形式系统的不完全性、许多问题的不可判定性都大大提高了人们的认识,也促进了数理逻辑的大发展。
发展
这种矛盾、危机引起的发展,改变面貌,甚至引起革命,在数学发展历史上是屡见不鲜的。第二次数学危机是由无穷小量的矛盾引起的,它反映了数学内部的有限与无穷的矛盾。数学中也一直贯穿着计算方法、分析方法在应用与概念上清楚及逻辑上严格的矛盾。在这方面,比较注意实用的数学家盲目应用。而比较注意严密的数学家及哲学家则提出批评。只有这两方面取得协调一致后,矛盾才能解决。后来算符演算及δ函数也重复了这个过程,开始是形式演算、任意应用,直到施瓦尔兹才奠定广义函数论的严整系统。
数学基础危机
对于第三次数学危机,有人认为只是数学基础的危机,与数学无关。这种看法是片面的。诚然,问题涉及数理逻辑和集合论,但它一开始就牵涉到无穷集合,而现代数学如果脱离无穷集合就可以说寸步难行。因为如果只考虑有限集合或至多是可数的集合,那绝大部分数学将不复存在。而且即便这些有限数学的内容,也有许多问题要涉及无穷的方法,比如解决数论中的许多问题都要用解析方法。由此看来,第三次数学危机是一次深刻的数学危机。

希望我的回答能帮到你!

❼ 数学史上的三次危机是什么

第一次数学危机

“万物皆数”是古希腊毕达哥拉斯学派坚不可摧的信仰。所谓“万物皆数”就是指任何的实数都可以表示为两个整数的比值。然而学派引以为傲的毕达哥拉斯定理(也就是我国俗称的勾股定理)却恰恰成了其信仰的终结者。

毕达哥拉斯学派中的一个“好事之徒希伯斯(Hippasu)对学派坚守的“万物皆数”首先表示了怀疑。他思考了一个问题:边长为1的正方形其对角线有多长呢?一番思索演算之后,他发现这一长度既不是整数,也不是分数,“万物皆数”的信仰就此崩塌。相传恼羞成怒的学派成员将希伯斯淹死在了海里,真理不仅没有给他荣誉反而招致杀身之祸,可悲亦可叹!

自被希伯斯发现之后,√2这个数学史上的第一个无理数便登上了舞台。然而这一发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念都是巨大的冲击。更为恼火的是,面对这一打击,人们手足无措,于是便直接导致了人们认识上史无前例的危机,从而导致了西方数学史上一场浩大的风波,史称“第一次数学危机”。

第二次数学危机

自微积分被发明之后,质疑之声就从未消停过。相当长的时间内,数学界对“无穷小”这一概念的理解和使用都是非常混乱的,但微积分理论的基础却恰恰就是“无穷小分析”。

这一理论上的缺陷招致了巨大的抨击,英国大主教更是直接称“无穷小”为盘旋的幽灵。如果这一危机无法解除,那无数由微积分理论所获得的成果都将遭受无情的质疑。这也就是数学史上的第二次危机。

转机出现在柯西,魏尔斯特拉斯等人用极限的方法定义无穷小量之后,这时微积分理论经过发展和完善才真正具有了严格的理论基础,从而使得数学大厦变得更加坚实牢固可靠,危机便也解除。

第三次数学危机

“数学狂人”康托一手所发展的集合论作为现代数学的基础早已是数学界的共识。然而在1903年,集合论被发现是有漏洞的!这一发现就像在平静的水面上投下了一块巨石,它所引起的巨大反响则导致了第三次数学危机。英国数学家罗素就是这一危机的“始作俑者”。

罗素构造了一个集合S:S由一切不是自身元素的集合所组成。之后罗素提出问题:S是否属于S呢?根据逻辑学上的排中律,一个元素或者属于某个集合,或者不属于某个集合。但对这个看似合理的问题的回答却会陷入两难境地。

如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据S的定义,S就属于S。所以无论如何都会产生矛盾!一时间,数学家为之恐慌,看似数学大厦即将樯倾楫摧不复存焉。第三次数学危机便自此爆发。

但顽强的数学家不会就此罢手,他们希望通过改造康托的集合论以便消除悖论。1908年,策梅罗提出了第一个公理化集合论体系,后来经其他数学家改进,称之为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷,然而也并非完美无瑕。

除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。相关的改进工作时至今日也为停下脚步。

总结来说,三次数学危机就是关于无理数,无穷小,罗素悖论的危机。但“危机”恰正好是“生机”,三次数学危机极大地促进了数学的严格化发展,使之成为了真正严谨的科学。

❽ 数学史上发生过三次危机,这三次危机是怎么回事

在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。

第一次数学危机

第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。

罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。”那么请问理发师自己的脸该由谁来刮?

罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。

虽然三次数学危机都已经得到了解决,但是对数学史的影响是非常深刻的,数学家试图建立严格的数学系统,但是无论多么小心,都会存在缺陷,包括后来发现的哥德尔不完备性定理。

❾ 数学史上的三次数学危机

数学史上的三次数学危机分别发生在公元前5世纪、17世纪、19世纪末,都是发生在西方文化大发展时期。因此,数学危机的发生,都有其一定的文化背景。
这三次数学危机分别是:
第一次:古希腊时代,由于不可公度的线段――无理数的发现与一些直觉的经验想抵触而引发的;
第二次:是在牛顿和莱布尼茨建立了微积分理论后,对无穷小量的理解未及深透引起的;
第三次:是当罗素发现了集合论中的悖论,危及整个数学的基础而引起的。
三次数学危机尽管当时对数学和哲学都造成了巨大的影响,给当时某个时期造成了某种困境,然而由于一直未妨碍数学的发展与应用。反而在困境过后去,给数学的发展带来了新的生机。

阅读全文

与简述三次数学危机如何形成的相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:738
乙酸乙酯化学式怎么算 浏览:1403
沈阳初中的数学是什么版本的 浏览:1349
华为手机家人共享如何查看地理位置 浏览:1041
一氧化碳还原氧化铝化学方程式怎么配平 浏览:883
数学c什么意思是什么意思是什么 浏览:1407
中考初中地理如何补 浏览:1298
360浏览器历史在哪里下载迅雷下载 浏览:700
数学奥数卡怎么办 浏览:1386
如何回答地理是什么 浏览:1022
win7如何删除电脑文件浏览历史 浏览:1054
大学物理实验干什么用的到 浏览:1483
二年级上册数学框框怎么填 浏览:1698
西安瑞禧生物科技有限公司怎么样 浏览:968
武大的分析化学怎么样 浏览:1246
ige电化学发光偏高怎么办 浏览:1336
学而思初中英语和语文怎么样 浏览:1649
下列哪个水飞蓟素化学结构 浏览:1422
化学理学哪些专业好 浏览:1485
数学中的棱的意思是什么 浏览:1056