㈠ 如何用matlab用数据画出 散点图,预测值,构建变量之间的函数关系,预测函数值的范围
有了数据可以这样来实现:
1、数据
x=[。。。];y=[。。。];
2、散点图的绘制
plot(x,y,'*') %绘制散点图
3、建立数学模型
根据散点图的趋势,初定数学模型(如y=a+b*e^x)
4、求拟合系数
用拟合函数(如nlinfit、lsqcurvefit)求出拟合系数a、b值
5、预测
用求出拟合函数表达式去预测未来值。
如有具体的数据和预测要求,可以帮你求解。
㈡ 如何利用excel制作数学模型
1.在表格中列好数据;
2.选中数据点击菜单栏中的“插入”,选择子菜单中的“图表”,从图表类型中选择合适的图表。(我一般用“XY散点图”)
3.点击菜单栏中的“图表”,可以添加趋势线。
如果要添加方程,可以在生成的图表中继续操作。
不知道你理解了没?
我给个图片吧。
㈢ 知道公式和一些成对数值,如何通过EXCEL建立非线性数学回归模型
1、首先绘制图表(图表工具中的散点图或折线图);
2、点所绘线条或散点,右键内“添加趋势线”;
3、根据需要选择趋势线类型(指数、幂等);
4、显示公式及相关系数。
㈣ 怎么用EXCEL制作一个散点图,然后在散点图上根据散点作一条有函数关系的直线
1、首先,我们打开我们的电脑,然后我们打开我们电脑上面的一个excel文档。
㈤ 数学建模
论文:运用统计和概率方法分析美国GDP运行走势
字体大小:大 | 中 | 小 2009-03-17 11:14 - 阅读:37 - 评论:0
撰稿时间:2008年11月
摘要:以美国近几十年的Real GDP(实际GDP)季度变化百分比作为离散型随机变量,运用统计和概率方法,利用马尔可夫链模型,按照变化幅度剧烈与缓慢进行量化、建模,从以往的几十年实际GDP变化规律,预测未来一两年内美国实际GDP变化走势。
关键字:GDP;概率;统计;马尔可夫链;转移概率;经济预测
1 引言
概率论与数理统计是研究随机现象客观规律性的数学学科,它的理论和方法已广泛地应用于自然学科、技术科学和社会科学的各个领域,尤其在天气预报、地质勘探等领域有着广泛的应用。着名经济学家特里夫·哈维默就认为全部经济规律都可以用概率的方法来描述。各种经济数据可以看作是一系列相互影响或者独立的随机变量,而经济数据的变化则是一个个错综复杂的随机过程。随着全球经济的融合和金融信息化,概率论在宏观经济预测、调控以及统计提供有效参考数据等方面将发挥越来越重要的作用。
国内生产总值(Gross Domestic Proct,GDP),是衡量一个国家经济运行好坏的最重要的经济运行指标之一。本文从概率论学角度出发,分析美国1947年以来近几十年的实际GDP(Real GDP)变化情况,从变化的幅度大小和变化的时间跨度两方面入手,将实际GDP变化百分比转化为在有限状态空间内变化的离散型随机变量。这个随机变量在状态空间内转移的过程也就是实际GDP随时间变化的随机过程,构建出实际GDP变化的马尔可夫链模型。从而根据建立的概率模型来预测随机变量的下一步的转移情况,得到的就是未来实际GDP的运行走势。大致的分析与预测过程可以描述为:数据处理->统计与分析->建立数学模型->得出结论。
2 对GDP的分析与建模
美国是全球最发达的经济体,对美国经济发展的运行指标进行研究和考察,不仅能揭示出美国经济周期本身的特点,还可以对经济运行起到良好的分析和借鉴作用,对世界各国宏观经济的运行预测和干预提供帮助。而且美国经济指标体系的完备程度也最高,作为重要的公共信息定期发布和修正,从理论分析上保证了数据的可靠性和充分性。
国内生产总值(Gross Domestic Proct,GDP):是指一国生产的全部最终产品和服务的总值。GDP是目前各个国家和地区用来衡量该国或地区的经济发展综合水平通用的指标,反应一个国家总体经济状况的一张最为重要、综合性最强的晴雨表。通常所说的GDP是指名义GDP(Normal GDP),而实际GDP(Real GDP)考虑到了通货膨胀导致价格上升的因素,相对而言更准确的反应了一个国家的经济发展。美国经济分析局[1](Bureau of Economic Analysis)提供的多种GDP指标中以不同的权重来衡量,此次分析选择了实际GDP季度变化百分比(Percent Change From Preceding Period in Real Gross Domestic Proct [Index numbers, 2000=100]),更关注的是GDP的波动变化。美国GDP数据每个季度公布一次,此次考察区间为1947年第2季度至2008年第3季度期间实际GDP变化百分比(见表1),用数学公式描述为一个离散的序列:t是表示季度的排序序号,从零开始;X表示实质GDP变化百分比
研究经济数据的运行过程,也是构造数学模型的过程,必然以大量的数据统计为基础。连续62年共246个季度的GDP变化百分比能够反应了美国相当长时期内的GDP走势,因此可以作为对今后一定长时期内GDP变化分析的数据依据[2]。
2.1 对GDP变化的直观分析
由于经济现象中经济变量的变化错综复杂,必然带有一定的随机“干扰”,因此需要先对随机变量分布作一定的假定。首先,使用微软EXCEL软件将上述变化百分比序列以散点图形式绘制出来(见图1)。从图上可以直观分析得出:美国连续62年以来,实际GDP变化百分比大体上经历着“上升-下降-上升-下降”的不断重复的特性,所不同的是,时间跨度和上升或下降的幅度不同。结合美国经济发展历史,在这62年期间美国经济经历了 “增长->衰退->增长->衰退”随机往复特性。当处于经济危机阶段或者经济滞胀时期,实际GDP变化百分比就会发生连续大幅上下震荡的趋势,而当经济处于平稳发展阶段,实际GDP变化百分比呈现小幅上下震荡趋势。由此可以根据实际GDP变化幅度反向推断经济运行趋势。
2.2构建GDP变化的马尔可夫链模型
马尔可夫(Markov)过程是用于分析随机过程的理论方法,对于时间和状态都是离散的马尔可夫过程称为马尔可夫链。马尔可夫链模型通常用于统计学中的建模,在自然生物人口过程、商品市场占有率变化、以及天气变化方面都有非常广泛的应用。如果某一时刻系统状态的概率分布只与前一时刻的状态有关,与以前的状态无关,则该系统符合马尔可夫性或者无后效性。实际GDP变化百分比受到很多外部经济变量如战争、宏观调控政策等各种因素的影响,变化呈现随机特性,因此可以认为短期内未来实质GDP变化百分比只与当前阶段的实质GDP变化有关,符合马尔可夫性。
为了描述实际GDP百分比的变化幅度,先要对看似随机变化的数据进行量化,幅度大小对百分比进行如下量化定义:
状态1:大幅增长(一次或者连续几次增长幅度超过7,包括边界值);
状态2:大幅下降(一次或者连续几次下降幅度超过7,包括边界值);
状态3:小幅增长(一次或者连续几次幅度增长大于1并且小于7);
状态4:小幅下降(一次或者连续几次幅度下降大于1并且小于7);
可以看出,区分大幅增长还是小幅度增长的变化幅度范围对概率统计起到决定因素,不同的量化标准产生的统计结果也会不一样。另外,在图1中可以看到有些相邻的时间点变化幅度非常微小,这里把这个叫做干扰,把前后相邻变化幅度小于1的序列点视为干扰信号,近似认为后一个序列点状态保持不变。如果将这种细微变化也算作小幅增长或者小幅下降,将会放大干扰信号的作用。这样实质GDP变化百分比就转化成了一个在1、2、3、4有限状态空间内变动的离散的时间序列。如果只关注状态变化趋势和经历的时间,则只需要记录状态发生变化的134个序号以及发生的时间点即可,这样一个新的状态序列描述为:s代表排序序号,从零开始;t代表状态发生变化的季度序号;Y代表状态。
用Microsoft Excel的散点图形式描绘的实际GDP变化状态(见图2)能够更直观的观察实际GDP变化幅度在有限个状态空间内的变化情况:
对上述状态序列Y(t)进行统计,可以得出各状态之间一步转移的次数,进而计算出各状态之间一步转移概率和一步转移矩阵P。另外,为了得到状态发生一步转移所经历的时间跨度,需要计算出相应的状态转移的时间差,即当tn到tn+1时,状态从Yn转移到Yn+1,则对应的时间跨度为sn+1-sn,通过简单的求平均值的方法求出所有一步状态转移对应的平均时间跨度(见表3),时间跨度以季度为一个单位。
状态转移 转移次数 一步转移概率 平均时间跨度
状态1到状态2 10 0.476 2.3
状态1到状态4 11 0.524 2.3
状态2到状态1 13 0.542 2.2
状态2到状态3 11 0.458 1.9
状态3到状态2 14 0.304 1.6
状态3到状态4 32 0.696 1.8
状态4到状态1 7 0.167 1.3
状态4到状态3 35 0.833 1.6
总计133次(表3:实际GDP状态一步转移统计结果)
2.3 根据马尔可夫模型对近期美国GDP变化进行预测
当前实质GDP变化的状态是4,根据上述转移矩阵和每次转移所经历的时间跨度可以得出近期发生状态转移的结果,即近期实质GDP变化幅度和大致所需要经历的时间。
当前状态 转移步数 目标状态 转移概率 平均时间跨度
4 2 2 0.333 3.4
4 2 4 0.667 3.5
4 3 1 0.292 5.3
4 3 3 0.708 5.2
表4:马尔可夫链模型对实质GDP变化的预测结果
模型给出的预测结果显示:美国实际GDP当前处于小幅下降阶段,经过2次转移后,大约在未来3~4个季度内,会出现两种变化走势,小幅下跌和大幅下跌,发生的可能性分别为66.7%和33.3%。经过3次转移后,大约在未来5~6季度会发生小幅增长和大幅增长,发生的概率分别为70.8%和29.2%。由此分析得出,未来3~4个季度内(目前为2008年11月)美国经济肯定会出现衰退,出现大幅幅度衰退的可能性高达66.7%;而经济恢复则需要在未来5~6季度内发生,缓慢回升的概率更大,占70.8%,由此看来美国未来一两年内经济形式面临严峻考验。
3 总结
概率论作为一门研究随机现象的数量规律学科,通过将金融经济中的数据以概率论方法统计分析后,可以关系到各个国家经济导向。今后将逐渐在经济中发挥着重要的作用。马尔科夫分析法是研究随机事件变化趋势的一种方法。经济运行数据的变化也经常受到各种不确定因素的影响而带有随机性,若其具有“无后效性”,则可以用马尔科夫分析法对其未来发展趋势进行宏观趋势分析。实际GDP季度变化百分比是一个固定时间间隔的幅度大小发生变化的随机过程,因此用马尔可夫链模型分析其变化趋势是比较符合这一类应用。首先对实际GDP季度变化百分比按照变化幅度划分有限个状态的状态空间,然后对状态之间的一步转移情况进行统计,进而计算出实际GDP变化的一步转移概率矩阵。由这个概率矩阵和当前状态就可以推算出GDP变化下一个状态是什么,其概率为多少,也就是未来的实际GDP变化走势。
任何模拟自然界数据的一种模型都会存在一定的误差,不同的是误差的大小不同而已。本文在数据处理阶段即概率状态空间的划分过程中,由于不同的量化标准产生的统计结果也不一样,因此会损失了部分样本,产生了一定的误差。
本文的概率分析过程仅针对众多经济运行指标中的一个进行,实际的经济运行体包括多个经济衡量指标,比如消费者物价指数、通货膨胀率、失业率等等,它们之间相互关联和影响,如果想更准确的得到经济运行走势,可以对多个经济指标逐个分析,然后对每个分析和预测结果再进行综合评测。
4标注
[1] 美国经济分析局BEA(Bureau of Economic Analysis):BEA的功能主要是分析和综合大量数据以便创造美国经济的一个连贯模式。BEA还对国际、国家和地区的经济进行预算和分析。其中以对国民生产总值(GDP)的预算最为着名。
[2] 美国实际GDP季度变化百分比仅从1947年开始有记载,因此数据有限,仅对未来短期内的GDP变化预测起到借鉴作用,对分析未来长期宏观经济形式可能会有局限性。
5参考文献
[1],高鸿生,《西方经济学(宏观部分)第四版》,中国人民大学出版社,2007
[2] 隋亚莉,李鸿儒,《经济数学基础--概率统计(第3版)》,清华大学出版社
[3] 范晓志, 宋宪萍,概率论在经济生活中的多维应用,《统计与决策》,2005,(8)
[4] 杨曾武,《统计预测原理》,中国财政经济出版社,1990
[5] 郝艳茹,马尔可夫链理论与市场占有率分析和预测,《上海统计》,2000,(1)
http://kittyzhang007.blog.bokee.net/bloggermole/blog_viewblog.do?id=2748601
㈥ 悲催地只会“散点图,趋势线"。想请问一下,一般用什么软件、方法建模和拟合验证已有数学模型呢谢谢
matlab、SPSS都可以,matlab里有专门的线性和非线性拟合函数,编程也简单,也可以直接用matlab里的cftool工具箱操作,拟合函数也可以自定义。如果是要验证数学模型,如果需要对数据的相关性进行分析,建议用SPSS里关于数据的聚类分析,都是直观的界面操作,比较简单;如果只是考察数据与模型的的拟合情况,在matlab里也可实现拟合优度等一系列参数的计算或假设检验等检验法。此外,matlab也可以先对数据进行残差分析等预先剔掉一些坏值。
㈦ 数学建模怎么做
问题一:数学建模怎么做啊? 刚参加完九月份的全国大学生数学建模竞赛。一份基本的的数学建模论文要包含以下几个方面:
摘要,问题的背景与提出,问题的分析,模型的假设,符号说明,模型的建立与求解,模型的评价与推广,参考文献。
正规的数学建模论文篇幅一般在20页以上。考虑到你读初三,老师的要求不会这么高,而且你的能力应该还有所欠缺。我的建议为你按照自己实际情况选择一个有一定挑战性的题目,题目的性质类似于应用题,但又和普通的应用题不同,可以没有确定答案,针对问题本身做一些分析和探讨,最好能和实际相结合。
要注意的是假设要合理,要有数学模型(包括一些方程,不等式等),要有分析思路,并且要对自己建立的模型进行优缺点评价,最好能做相应推广。
问题二:如何准备数学建模呢 需要做那些准备呢 作为大一、大二学生,第一,找一本有关建模的基础教程,如清华大学姜启源的《数学模型》(第三版)及配套习题和参考解答,系统地看完整个内容,并适当地选择一些复杂的习题自己做一做。第二,学会一门数学软件的使用,如matlab、mathematica、lingo、sps伐等。上面列出的软件中,必须熟练掌握一门,其它的也要进行了解。再就是一般Office软件如word、excel也要熟练掌握。特别要注意,word中数学公式的编排。平时多用,到竞赛时就不会手忙脚乱了。第三,掌握科技论文旋涡状的写作方法。到网上下载一些以前全国或全美大学生数学建模竞赛的获奖论文,学习别人建模写作方法。还有就是,平时多注意一些社会热点问题,看看能否试着用已尝到的数学建模方法去解决。
数学建模知识的平时积累,对一个想要参加数学建模竞赛的大学生是非常重要的。你在自我学习的过程中,还就多和身边的同学交流心得,合作地做几个问题,这也有助于自己建模水平的提高,并锻炼自己的协作工作能力、合作精神。
问题三:如何入门参与数学建模 学习运筹学知识和一些程序知识
问题四:如何利用excel制作数学模型 1.在表格中列好数据;
2.选中数据点击菜单栏中的“插入”,选择子菜单中的“图表”,从图表类型中选择合适的图表。(我一般用“XY散点图”)
3.点击菜单栏中的“图表”,可以添加趋势线。
如果要添加方程,可以在生成的图表中继续操作。
不知道你理解了没?
我给个图片吧。
问题五:数学建模里的题怎么做? 你这个问题有些不好回答
不同的题目所用方法不同建模的目的不同
建模的要求不同
建模的条件不同
都会有影响
导致所用方法不同
㈧ 如何建立函数模型解决实际问题
(1)观察实际情景:
对实际问题中的变化过程进行分析;
(2)发现和提出问题:
析出常量、变量及其相互关系;
(3)收集数据、分析数据:
明确其运动变化的基本特征,从而确定它的运动变化类型;
(4)选择函数模型:
根据分析结果,选择适当的函数类型构建数学模型,将实际问题化归为数学问题;
(5)求解函数模型:
根据实际问题,通过运算推理,求解函数模型; 比如计算函数的特殊值,研究函数的单调性,最值,极大极小值等。
(6)检验模型:
利用函数模型的解说明实际问题的变化规律,达到解决问题的目的.