1. 高等数学求极限的方法总结
1. 代入法, 分母极限不为零时使用。先考察分母的极限,分母极限是不为零的常数时即用此法。
【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)
解:lim[x-->√3](x^2-3)/(x^4+x^2+1)
=(3-3)/(9+3+1)=0
【例2】lim[x-->0](lg(1+x)+e^x)/arccosx
解:lim[x-->0](lg(1+x)+e^x)/arccosx
=(lg1+e^0)/arccos0
=(0+1)/1
=1
2. 倒数法,分母极限为零,分子极限为不等于零的常数时使用。
【例3】 lim[x-->1]x/(1-x)
解:∵lim[x-->1] (1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞
以后凡遇分母极限为零,分子极限为不等于零的常数时,可直接将其极限写作∞。
3. 消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用。
【例4】 lim[x-->1](x^2-2x+1)/(x^3-x)
解:lim[x-->1](x^2-2x+1)/(x^3-x)
=lim[x-->1](x-1)^2/[x(x^2-1)
=lim[x-->1](x-1)/x
=0
【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)
解:lim[x-->-2] (x^3+3x^2+2x)/(x^2-x-6)
= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)]
= lim[x-->-2]x(x+1) / (x-3)
=-2/5
【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)
解:lim[x-->1](x^2-6x+8)/(x^2-5x+4)
= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)]
= lim[x-->1](x-2) /[(x-1)
=∞
【例7】lim[h-->0][(x+k)^3-x^3]/h
解:lim[h-->0][(x+h)^3-x^3]/h
= lim[h-->0][(x+h) –x][(x+h)^2+x(x+h)+h^2]/h
= lim[h-->0] [(x+h)^2+x(x+h)+h^2]
=2x^2
这实际上是为将来的求导数做准备。
4. 消去零因子(有理化)法,分母极限为零,分子极限也为零,不可分解,但可有理化时使用。可利用平方差、立方差、立方和进行有理化。
【例8】lim[x-->0][√1+x^2]-1]/x
解:lim[x-->0][√1+x^2]-1]/x
= lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]}
= lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]}
= lim[x-->0] x / [√1+x^2]+1]
=0
【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
解:lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)]
÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]}
=lim[x-->-8](-x-8) [4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]}
=lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3]
=-2
5. 零因子替换法。利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用。常配合利用三角函数公式。
【例10】lim[x-->0]sinax/sinbx
解:lim[x-->0]sinax/sinbx
= lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx)
=1*1*a/b=a/b
【例11】lim[x-->0]sinax/tanbx
解:lim[x-->0]sinax/tanbx
= lim[x-->0]sinax/ sinbx*lim[x-->0]cosbx
=a/b
6. 无穷转换法,分母、分子出现无穷大时使用,常常借用无穷大和无穷小的性质。
【例12】lim[x-->∞]sinx/x
解:∵x-->∞ ∴1/x是无穷小量
∵|sinx|<=1, 是有界量 ∴sinx/x=sinx* 1/x是无穷小量
从而:lim[x-->∞]sinx/x=0
【例13】lim[x-->∞](x^2-1)/(2x^2-x-1)
解:lim[x-->∞](x^2-1)/(2x^2-x-1)
= lim[x-->∞](1 -1/x^2)/(2-1/x-1/ x^2)
=1/2
【例14】lim[n-->∞](1+2+……+n)/(2n^2-n-1)
解:lim[n-->∞](1+2+……+n)/(2n^2-n-1)
=lim[n-->∞][n( n+1)/2]/(2n^2-n-1)
=lim[n-->∞][ (1+1/n)/2]/(2-1/n-1/n^2)
=1/4
【例15】lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50
解:lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50
= lim[x-->∞][(2x-3)/ (5x+1)]^20[(3x+2)/ (5x+1)]^30
= lim[x-->∞][(2-3/x)/ (5+1/ x)]^20[(3+2/ x)/ (5+1/ x)]^30
=(2/5)^20(3/5)^30=2^20*3^30/5^50
2. 高数极限公式是什么
1、第一个重要极限的公式:
lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。
特别注意的是x→∞时,1 / x是无穷小,无穷小的性质得到的极限是0。
2、第二个重要极限的公式:
lim (1+1/x) ^x = e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x→0时,(1+x)^(1/x)的极限等于e。
其他公式:
1、椭圆周长(L)的精确计算要用到积分或无穷级数的求和,最早由伯努利提出,欧拉发展,对这类问题的讨论引出一门数学分支椭圆积分L = 4a * sqrt(1-e^sin^t)的(0 - pi/2)积分,其中a为椭圆长轴,e为离心率。
2、定积分的近似计算,定积分应用相关公式,空间解析几何和向量代数,多元函数微分法及应用,微分法在几何上的应用,方向导数与梯度,多元函数的极值及其求法,重积分及其应用,柱面坐标和球面坐标,曲线积分,曲面积分,高斯公式,斯托克斯公式是曲线积分与曲面积分的关系。
3、设{xn}为一源个无穷实数数列的集合。如果存在实数a,对于任意正数ε,都N>0,唯一性若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。有界性:如果一个数列收敛有极限),那么这个数列一定有界。
3. 高数中求极限的方法总结
1、极限分为一般极限,还有个数列极限
区别在于数列极限是发散的,是一般极限的一种。
2、解决极限的方法如下
(1)等价无穷小的转化(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在),e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。
(2)洛必达法则(大题目有时候会有暗示要你使用这个方法)首先它的使用有严格的使用前提,必须是X趋近而不是N趋近(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷)。必须是函数的导数要存在(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)。必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。
3、泰勒公式
(含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法
取大头原则最大项除分子分母,看上去复杂处理很简单。
5、无穷小与有界函数的处理办法
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
6、夹逼定理
(主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用
对付数列极限,q绝对值符号要小于1。
8、各项的拆分相加
来消掉中间的大多数,对付的还是数列极限,可以使用待定系数法来拆分化简函数。
9、求左右求极限的方式
(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,Xn的极限与Xn+1的极限是一样的,应为极限去掉有限项目极限值不变化。
4. 数学极限怎么求
数学极限求法参考如下:
高等数学的极限,是必备的技能,也是学习高等数学遇到的第一只拦路虎。
方法/步骤
1、我们用同济第六版的教科书,外皮是绿色的那本,开篇是一些函数,用来和高中衔接,比如取整函数、绝对值函数,要求会画出他们的图像,明了他们的性质。
2、接下来要学的定义域、单调性、单调区间、最值等,都要掌握他们的性质。还有四大反函数,高中学过他们的正函数,反函数就是定义域和值域互相反过来,一般取一个单调的区间来研究反函数。
3、比如说arccosX 定义域是[-1,1],取值域为[0,π]。掌握不牢的可以看高中的函数。另外复合函数,就是把五大类初等函数进行复合,形成的新的函数。以后,将会研究他们的定义域、单调性、最值等。
4、关于数列的极限,书上有严格的证明,ξ—N定义比较难以掌握,真正的好的大学老师,会把定义讲的深入浅出,数列的极限就是x趋于∞时候,数列的值。函数的极限类似掌握。
5、但是,左右极限可能不相等,这就用到了我们分段函数的左右极限,左右不相等就是极限不存在。若使极限存在,我们也能求出应求的值。对于渐近线,也可以用极限的思想来求,水平渐近线就是x趋于∞的时候,y趋于常数;竖直渐近线则相反。
6、 对于求极限,先分析是什么类型的,一般∞—∞或者带分母的,要先有理化,另外0/0或者∞/∞型,可以用洛必达来求导。x~sinx~ln(1+x)~tanx,(1+x)^a-1~ax,需熟记。
5. 高等数学求极限有哪些方法
1、其一,常用的极限延伸,如:lim(x->0)(1+x)^1/x=e,lim(x->0)sinx/x=1。极限论是数学分析的基础,极限问题是数学分析中的主要问题之一,中心问题有两个:一是证明极限存在,极限问题是数学分析中的困难问题之一;二是求极限的值。
2、其二,罗比达法则,如0/0,oo/oo型,或能化成上述两种情况的类型题目。两个问题有密切的关系:若求出了极限的值,自然极限的存在性也被证明。
3、其三,泰勒展开,这类题目如有sinx,cosx,ln(1+x)等等可以迈克劳林展开为关于x的多项式。反之,证明了存在性,常常也就为计算极限铺平了道路。本文主要概括了人们常用的求极限值的若干方法,更多的方法,有赖于人们根据具体情况进行具体的分析和处理。
4、等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。(x趋近无穷的时候还原成无穷小)。
5、知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化。
6. 大学高等数学求极限的方法
基本方法有:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
2、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;
3、运用两个特别极限;
4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。它不是所向无敌,不可以代替其他所有方法,一楼言过其实。
5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。
6、等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。
7、夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。
8、特殊情况下,化为积分计算。