1. 数学的意义与价值是什么
数学的意义:数学是研究数量,结构,变化,空间以及信息等。数学所描述的数量关系与空间形式,就自然成为物理学,力学,天文学,化学,生物学等自然科学的基础。
数学的价值:数学为物理学,力学,天文学等科学提供了语言与工具。
数学被应用在很多不同的领域上,包括科学,工程,医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
以上内容来源:网络-数学
2. 学数学的意义是什么
数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题.掌握数字规律,训练逻辑思维,数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学.可以解决生活中的许多实际问题啊 如果没有数学可以说就没有这个世界!有很多看似枯燥又无理取闹的问题在实际生活中都有意想不到的应用.比如计算机的二进制,比如圆锥曲线的应用,也许你只知道它很麻烦很变态,实际上反光镜、冷却塔的原理都少不了它!数列很无聊,但是魔术师们的洗牌技巧都在这里,不懂数学的人就会被骗!遗忘迁移才让我们可以放心大胆地输入各种帐号和密码,没有地图涂色问题,一块指甲大的电路板恐怕检测到明年也不知道哪里短路…数学的作用就是问一些看似精神病但是完全有可能推动人类进步的问题,学数学的意义就是不光会做老师们纯粹为了考大家的题目,更重要的是把这些讨厌的问题变成人人都喜闻乐见的实际性成果,数学家们是默默无闻却强大无比的历史推进者!掌握数字规律,训练逻辑思维,能训练人们的思维能力.开发脑力.更理性的去认识这个世界.数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题 掌握数字规律,训练逻辑思维,数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学.意义深远!如果没有数学可以说就没有这个世界!有很多看似枯燥又无理取闹的问题在实际生活中都有意想不到的应用.比如计算机的二进制,比如圆锥曲线的应用,也许你只知道它很麻烦很变态,实际上反光镜、冷却塔的原理都少不了它!数列很无聊,但是魔术师们的洗牌技巧都在这里,不懂数学的人就会被骗!遗忘迁移才让我们可以放心大胆地输入各种帐号和密码,没有地图涂色问题,一块指甲大的电路板恐怕检测到明年也不知道哪里短路…数学的作用就是问一些看似精神病但是完全有可能推动人类进步的问题,学数学的意义就是不光会做老师们纯粹为了考大家的题目,更重要的是把这些讨厌的问题变成人人都喜闻乐见的实际性成果,数学家们是默默无闻却强大无比的历史推进者
3. 什么是数学数学在现实生活中的作用有什么
引言:说起数学这个名词,很多人都会想到数学这门学科。确实从小学到大学甚至学到更高的层次都离不开数学,那么到底什么是数学呢?数学在现实生活中究竟有哪些作用呢?
三、生活中的数学说起生活中的数学普遍一些的,就是加减乘除这些基本的计算了,因为这些数字都是跟钱有关的。但是实际上数学中最广泛的应用还是在各种学科的基础理论支撑,比如说财经中就需要运用到数学来进行计算以及报表的分析。而物理学科也是需要数学的。尤其是计算机,其实计算机的基础就是通过各种数字的排列来表达信息的。同时数学在各种机密计算以及航天事业中的作用也是不容小觑的。
4. 数学在实际生活中的意义与用途
数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(引自《古今数学思想》第一册P1——作者注)。“在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科”(引自《古今数学思想》第一册P1——作者注)登上了人类发展史的大舞台。
如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。由于这些内容所涉及的高中数学知识不是很多,在此就不赘述了。
由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。
下面,我就紧扣高中数学学习的实际,从函数、不等式、数列、立体几何和解析几何等五方面,简明扼要地谈一下数学知识在生产生活中的应用。
http://www.yrsx.com/Article_View.asp?id=20
第一部分 函数的应用
我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关系,因此代数中的函数知识是与生产实践及生活实际密切相关的。这里重点讲前两类函数的应用。
一元一次函数的应用
一元一次函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。
例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。
下面,我就为大家讲述我亲身经历的一件事。
随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用。一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。
我在纸上写道:
设某顾客买茶杯x只,付款y元,(x>3且x∈N),则
用第一种方法付款y1=4×20+(x-4)×5=5x+60;
用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.
接着比较y1y2的相对大小.
设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.
然后便要进行讨论:
当d>0时,0.5x-12>0,即x>24;
当d=0时,x=24;
当d<0时,x<24.
综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.
可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!
http://www.yrsx.com/Article_View.asp?ID=20&page=1
二、一元二次函数的应用
在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时,
其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。
三、三角函数的应用
三角函数的应用极其广泛,这里仅讲最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。
在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。这便要用到锐角三角函数的知识。
如右图,令C=90 ,B=α ,平地距为d,山坡距为r,则secα=secB =AB/CB=r/d. ∴r=secα×d这个问题至此便迎刃而解了。
http://www.yrsx.com/Article_View.asp?ID=20&page=2
第二部分 不等式的应用
日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两类不等式的应用与其对应函数及方程的应用如出一辙,而平均值不等式在生产生活中起到了不容忽视的作用。下面,我主要谈一下均值不等式和均值定理的应用。
在生产和建设中,许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。平均值不等式知识在日常生活中的应用,笔者虽未亲身经历,但从电视、报纸等新闻媒体及我们所做的应用题中不难发现,均值不等式和极值定理通常可有如下几方面的极其重要的应用:(表后重点分析“包装罐设计”问题)
实践活动 已知条件 最优方案 解决办法
设计花坛绿地 周长或斜边 面积最大 极值定理一
经营成本 各项费用单价及销售量 成本最低 函数、极值定理二
车船票价设计 航行里程、限载人数、 票价最低 用极值定理二求出
速度、各项费用及相应 最低成本,再由此
比例关系 计算出最低票价
(票价=最低票价+ +平均利润)
包装罐设计 (见表后) (见表后) (见表后)
包装罐设计问题
1、“白猫”洗衣粉桶
“白猫”洗衣粉桶的形状是等边圆柱(如右图所示),
若容积一定且底面与侧面厚度一样,问高与底面半径是
什么关系时用料最省(即表面积最小)?
分析:容积一定=>лr h=V(定值)
=>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2)
≥2л3 (r h) /4 =3 2лV (当且仅当r =rh/2=>h=2r时取等号),
∴应设计为h=d的等边圆柱体.
2、“易拉罐”问题
圆柱体上下第半径为R,高为h,若体积为定值V,且上下底
厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最
省(即表面积最小)?
分析:应用均值定理,同理可得h=2d(计算过程请读者自己
写出,本文从略)∴应设计为h=2d的圆柱体.
事实上,不等式特别是均值不等式在生产实践中的应用远不止这些,在这里就不一一列举了。
http://www.yrsx.com/Article_View.asp?ID=20&page=3
第三部分 数列的应用
在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。
本文重点分析等差数列、等比数列在实际生活和经济活动中的应用。
(一)按揭货款中的数列问题
随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。
众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。
若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有:
a1=a0(1+p)-a,
a2=a1(1+p)-a,
a3=a2(1+p)-a,
......
an+1=an(1+p)-a,.........................(*)
将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p.
由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。
(二)有关数列的其他应用问题
数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。读者朋友一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。下面请看北京市西城区2003年抽样测试-高二数学试卷中的一道应用问题。
http://www.yrsx.com/Article_View.asp?ID=20&page=4
http://www.yrsx.com/Article_View.asp?ID=20&page=5
5. 数学的意义是什么
数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题。
掌握数字规律,训练逻辑思维,数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学。
有很多看似枯燥又无理取闹的问题在实际生活中都有意想不到的应用。比如计算机的二进制,比如圆锥曲线的应用,也许你只知道它很麻烦很变态,实际上反光镜、冷却塔的原理都少不了它!
严谨性
严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”。
而这情形在历史上曾出现过许多的例子,在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。
牛顿为了解决问题所作的定义,到了19世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度。
6. 什么是数学数学在现实生活中的作用有什么
数学在现实生活中的应用并没有那么多,但你可能不清楚数学对我们的生活造成了什么样的影响,应该说数学就是规则就是规矩。就是有个相应的运算,法则按照这个东西去走,能得出一些有用的结果,而这些结果在我们生活中无时无刻都有体现。
数学就是规则就是运算,单纯的一个数字是没有意义的,但是这个数字本身被赋予了某些意义之后,运算的结果就有意义了。比如说3000+5000这东西就是一个数学公式,但你基本工资是3000,绩效是5000,加在一起就是8000,这8000块象征你的工资他不就有意义了吗?这只是一个很简单的生活中的体现而已,还有更复杂的呢。
7. 数学对于一个人的生活和工作都有什么意义呢该怎样理解数学这门学科
数学对于一个人的生活和工作都有什么意义呢?该怎样理解数学这门学科?
这对你而言未来人生有更高的协助,从你独立思考,包含解决困难和人相处过程中都要用理性和逻辑性来领着你迈向更加好的方位和人生。因此提高数学成绩实际上是非常有必要的,也不是说数学课在生命中并没什么协助,并不是这样的。反倒数学课给你带来的水平通常是潜在的。
8. 数学对个人的生活和工作有什么意义该如何理解数学
数学的魅力,显然不在于纸面上的考试成绩,更不是被现在教育所淘汰的残次品所理解的完全可以被计算机取代的数字计算,而是那种能把复杂问题变简单的化繁为简的能力以及严密的形式逻辑推理能力。有这两种能力为基础,遇到任何领域的复杂问题都可以从容应对,条理分明、事半功倍,这才是数学为什么如此重要。数学运用更重要的是数学思想,我们将生活中的各种事件进行数学化处理,然后经过逻辑分析、推理计算,从而得出最优解,这就是数学思想,数学思想可以更好的帮助我们规划生活与工作。
9. 数学的作用有哪些
数学的作用如下:
1、 解决生活中的问题 ,做到学以致用
数学在现实世界中有着广泛的应用,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略”。人们经常会遇到这种情况,一道题目讲了很久学生还弄不懂。如果老师将这道问题与生活实际联系起来,学生马上就能解决。
2、创设生活情景,激发学习兴趣
应用题源于生活,每道应用题总可以在生活中找到它的蓝本。
3、数学是学习和研究现代科学技术必不可少的基本工具
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
4、科学探索、技术创新非常有用
科学探索、技术创新是人类社会共同的梦。有了数学知识的铺垫,才能让二者有实现的可能。同学可能会说,老师这离我们太遥远。我们不能为了一个遥远的的梦想消磨时间。人生短暂,我们能不能现实地生活在属于自己的空间。就拿现在的人工智能、机器学习、深度学习。没有数学基础,这些内容就是天方夜谭。
5、日常生活也非常有用
大到储蓄存款,小到买菜花钱,生活中的数学随处可见。重要性可见一斑。为了生活质量提升,也得对数学刮目相看。每位同学都经历从阿拉伯数字开始,一直到高考数学的考卷。没有数学的合格分数,升学梦也无法兑现。
10. 数学对我们的生活有什么意义
数学可以帮助我们计算价格,可以帮助我们计算成本与收入,对我们的生活还是有很大的便利的,生活处处离不开数学。