导航:首页 > 数字科学 > 如何理解数学已经从幕后走到台前

如何理解数学已经从幕后走到台前

发布时间:2023-01-13 16:43:15

A. 如何通过数学建模和数学探究改善对学生的评价,突出评价的过程性和激励作用。

学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式.这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程.要使这个课程基本理念真正落实到高中数学教学中,教师应根据学生的认知水平和已有的知识经验设立体现数学某些重要应用的课程,开展“数学探究”“数学建模”的学习活动,力求使学生体验数学在解决实际问题中的作用,数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力,体验数学的真谛.

20世纪下半叶以来,数学应用的巨大发展是数学发展的显着特征之一.当今知识经济时代,数学正从幕后走向台前,数学和计算机技术的结合使得数学能够在许多方面直接为社会创造价值,同时,也为数学发展开拓了广阔的前景.我国的数学教育在很长一段时间内对于数学与实际、数学与其他学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强.近几年来,我国大学 、中学数学建模的实践表明,开展数学应用的教学活动符合社会需要,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野.在这样的课程理念下,人民教育出版社课程标准B版教材给我们吹来了一股春风,它不仅仅是简单的文字变化,而是教学思想理念的突出体现.整套教材设立了大量的“数学探究”“数学建模”等学习活动,提供了基本内容的实际背景,反映了数学的应用价值.这些体现数学应用的课程为学生形成积极主动的、多样的学习方式进一步创造了有利条件,同时也激发学生的数学学习兴趣、鼓励学生在学习过程中,养成独立思考、积极探索的习惯.

下面笔者就对“函数(第一课时)”内容进行了如下教学设计和尝试.

教材分析

1.本课的地位和作用

函数是数学中重要的基础概念之一。学生进一步学习的高等数学基础课程,包括极限理论、微分学、积分学、微分方程和泛函分析等,无一不是以函数作为基本概念和研究对象的。其他学科,如物理学科等,也是以函数的基础知识作为研究问题和解决问题的工具。它是在初中初步探讨函数的概念,函数关系的表示方法、图象的位置等基础上,对函数概念的再认识,即用集合的思想理解函数的一般定义。函数及应用研究的深入及提高,也是今后进一步参加工农业生产建设需要具备的基础知识.本章的学习对中学生数学学习起着决定性的作用.而且不仅是知识性方面,更重要的是在数学建模方面,也将是终身受益的一章.

2.教学重点与难点

重点:体会函数是描述两个变量之间的依赖关系的重要数学模型,在映射的基础上理解函数的概念.

难点:对函数符号y=f(x)的理解.

教学目标

1.知识与技能目标:

(1)通过不同的生活实例帮助学生建立数学概念的背景,从而正确理解函数的概念.

(2)能用集合与对应的语言来刻画函数,了解构成函数的要素,即定义域和对应法则;进一步理解对应法则的意义.

2.过程与方法目标:

了解函数是描述变量之间依赖关系的重要数学模型。在此基础上学习用集合与对应的语言来刻画函数,再现函数知识产生的过程。在数学建模中体验用数学思想、方法和知识解决实际问题的过程。

3.情感态度与价值观目标:

通过创设实际生活情景,让学生接近现实生活,关注社会实际;感受对应关系在刻画函数的概念中的作用,激发学生学习数学的兴趣,陶冶学生的情操,培养学生勇于探索的科学精神.

教学过程

一、创设问题情境

师:在初中我们已经学习过函数的概念,并且知道可以用函数描述两个变量之间的依赖关系,今天我们将进一步学习函数及其构成要素.下面我们一起看几个实例:

问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距地面的高度h(m)随时间t(s)的变化的规律是h=130t-5t2.提出以下问题:

(1) 炮弹飞行1s、10s、20s时距地面多高?

(2) 炮弹何时距离地面最高?

(3) 你能指出变量t和h的取值范围吗?分别用集合A和集合B表示出来.

(4) 对于集合A中的任意一个时间t,按照对应关系h=130t-5t2,在集合B中是否都有唯一的高度h和它对应?

生:因为有初中的基础,很快说出前三个小问题的答案,问题(4)师启发学生用集合与对应的语言描述变量之间的依赖关系:在t的变化范围内,任给一个t,按照给定的解析式,都有唯一的一个高度h与之对应.

[从多媒体展示的生活问题入手,再现初中变量观点描述函数的概念,为后面用集合和对应的观点来定义函数奠定基础。]

问题2.某市气象观测站测试一天24小时内的气温变化如图所示

(1) 上午8时的气温约是多少?

(2) 你能指出变量t和θ的取值范围吗?分别用集合A和集合B表示出来.

(3) 对于集合A中的每一个时刻t,按照图像所示,在集合B中是否都有唯一确定的温度θ和它对应?

生1答:上午8时的气温约是0。C;t的取值范围是[0,24];

θ的取值范围是[-2,9]。

生2答:对于集合A中的每一个时刻t,按照图象所示,在集合B中都有唯一确定的温度θ和它对应。

接着师请学生回顾近十年来自己家庭生活的变化,其中哪些方面的消费变化大?哪些方面的消费变化小?

[学生回答踊跃,进一步调动了学生的积极性,并亲身经历将实际问题抽象成数学模型的过程,这实际是倡导做数学和用数学,关注学生知识的形成发展的过程.]

师又抛出问题3.你认为该用什么数据来衡量家庭生活质量的高低?幻灯展示恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显着变化.

t
91
92
93
94
95
96
97
98
99
00
01

r
53.8
52.9
50.1
49.9
49.9
48.6
46.5
44.5
41.9
39.2
37.9

阅读图表后仿照问题1、问题2、描述表中恩格尔系数r和时间t(年份)的关系.

生归纳:对于表中的任一个时间t(年份),按照表格,都有唯一的一个恩格尔系数r与之对应.

二、探索新知

生分组讨论以上实例的共同特点,归纳总结出:都涉及到两个非空数集A、B,都存在某种对应关系,使对于A中的每一个数x,按照这种对应关系,在B中都有唯一的y与x对应.

[实际问题引出概念,激发学生兴趣,给学生思考、探索的空间,让学生体验数学发现和创造的历程,提高分析和解决问题的能力。]

1.函数的定义

设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x.在集合B中都有唯一确定的数值y和它对应,则这种对应关系叫做集合A上的一个函数。记作,其中.定义域:x的取值范围(数集A)叫做函数的定义域;如果自变量取值a,则法则f确定的值y称为函数在a处的函数值。值域:函数值的集合{y/y=,}叫做函数的值域.

师生共同回忆在初中介绍的函数概念,它是这样表述的:

设在一个变化过程中有两个变量与,如果对于的每一个值,都有惟一的值与它对应,那么就说是自变量,是的函数.

[我们看到,这里是用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的.]

师:函数的对应法则通常用记号表示,函数记号表明,对于定义域中的任意,在“对应法则”作用下得到.在比较简单的情况下,对应法则可用一个解析式来表示,但在不少问题中,对应法则要用几个解析式来表示,有时甚至不可能用解析式来表示,那用什么表示呢?

生:要用其他方式(如列表、图象)来表示.

学生分组讨论,函数定义需要注意的几个方面:(师板书)

(1),方向性;

(2)关键词“任意一个x”“唯一确定的数f(x)”.

(3)A,B为非空数集;

(4)A中的任一个元素,B中都有惟一的元素与之对应;而B中的元素在A中的对应元素可以不惟一,也可以没有,显然值域.

[教师在讲解概念时,在多媒体屏幕上有意识地用不同颜色的字体,突出强调重点,调动学生的非智力因素理解概念。]

2. 问题4:

(1)下列对应发则是否是在给定集合上的一个函数?

①R,g:自变量的倒数;

②R,h:自变量的平方根;

③R,s:自变量t的平方减2。

(2)下面一组函数,是否为相同的函数?

①f(x)=x2,x∈R;

②s(t)=t2,t∈R;

③g(x-2)=(x-2) 2,x∈R .

生:确定一个函数的两要素:定义域和对应法则.

师生互动研讨得出:函数用符号表示,在初中学习函数时未出现这个符号,应说明几点:

①,是表示是的函数,不是表示等于与的乘积;

② 不一定是一个解析式;

③ 与 是不同的.

3、例题教学:

师出示例1 ,某西瓜摊卖西瓜,6斤以下每斤4角,6斤以上每斤6角.请表示出西瓜重量x与售价y的函数关系.

生解:用解析法,这个函数的解析表示应分两种情况:

当时,;当时,.

师:这种函数叫分段函数,我们还可以用图象法来表示.请一位学生画出这个函数的图象.

师:请问这个函数关系是否能用列表法表示呢?不方便.因为西瓜重量的等级太多,列表不易列全.

三、巩固练习1:下列图形中可以作为函数图象的是( )

练习2:下列函数中哪个与函数是同一函数?

四、课堂小结

这节课的研究学习就到这里了,请大家回顾一下这节课的探索和收获.

生1、我们知道了函数定义:设A,B都是非空的数集,那么A到B的映射就叫做A到B的
函数,记作,其中,.

生2、我们知道了函数有三种表示方法:解析法,列表法,图象法.

生3、我们知道了函数的三要素:定义域;值域;

中的为对应法则.定义域为函数的基础,对应法则为函数的核心.

生4、本节课我们讨论、合作、交流等小组活动,亲身经历了将实际问题抽象成数学模型并进行解释与应用的过程,觉得我们身边处处有数学.

师:说得好!这些正是我们这一节课的重心所在,希望以后能看到你们独立思考探索的成果,展示你们的研究风采.

五、建模作业

①某种钉子,每只1角5分,买只钉子的钱数是元,请列出与的函数关系式,并画出函数的图象.

②邮寄包裹,每千克重的包裹收邮资费2元,邮程超过100km以后,每增加1km加收2角,求邮资与包裹所走的千米数的函数关系.

③请同学记录一周的天气预报,列出日最高气温与日期的函数关系.

教学评析

一、注重函数概念形成过程,感悟数学真谛

我们都知道数学概念都是从客观世界中直接或间接抽象出来的,其定义大多采用“问题情景—抽取本质属性—推广到一般”的方法给出.本节课函数的概念就是在教师的引导下,学生以探索者的姿态出现,参与了概念的形成规律的揭示过程,使其思维亲身经历了一个由具体到抽象、概括事物本质的认知过程,领悟知识形成过程中隐藏的思想方法,则学生获得的不仅是函数概念,更重要的是拓宽了思维空间感悟了数学的真谛,在掌握概念的同时其概括能力得到训练.

二、问题设计开放新颖,渗透数学思想方法

我们都知道学生原有的知识和经验是学习的基础,学生的学习都是在原有的知识经验基础上自我生成的过程.在学习函数概念前,学生在初中已经接触函数,教学中教师善于运用类比思想,抓住初中与高中两个函数概念的优劣,使学生体会知识之间的有机联系,感受数学的整体性。在学生合作交流的基础上,学生归纳出函数定义的几个注意方面,渗透了转化思想与归纳方法.

三、挖掘教材资源,拓展学生探究空间

我们都知道数学教材是数学课程标准的体现,是数学学科知识体系的精选,师生使用起来非常方便.本节课教师在教学中没有只停留在课本表面,而是认真钻研和熟悉教材,针对教材中的知识点,充分利用各种教学资源,组织学生探究,以培养学生的探究能力.这种精心设计的探究活动,能激发学生学习数学的积极性,提高学生探索问题、研究问题的能力.

四、改善教与学的方式,使学生主动地学习

丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念。学生的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式。本节教学中,既有教师的讲授和指导,也有学生的自主探索与合作交流,整节课教师都关注了学生的主体参与,给学生留有适当的拓展、延伸的空间和时间,激发学生对数学学习的兴趣,养成良好的学习习惯.

五、注重数学建模活动,发展学生应用意识

着名数学教育家弗赖登塔尔在谈到数学应用时,曾指出“应从两个方面来理解数学应用:既要重视从实际问题中提取数学概念和原理,又要重视用数学概念与原理反过来处理实际问题”;“而要将学校数学更为广泛地应用到不同的脉络背景,数学化应该是数学教学的主要方式”。本节课教师通过数学建模活动引导学生从实际情境中发现问题,并归结为数学模型,形成数学问题(即实际问题数学化)。同时开阔了学生的视野,体会了数学的科学价值、应用价值、人文价值.

B. 如何对数学知识深刻理解

学数学靠的是勤奋,靠的是课前认真预习,上课认真听讲,课后认真复习,多做练习题。
怎样才能学好数学
★怎样才能学好数学?
要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。
事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。
究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。
由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。

一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。帮助学生认真分析运算出错的具体原因,是提高学生运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:
①情绪稳定,算理明确,过程合理,速度均匀,结果准确;
②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。

二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。
★什么是理解?
按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。
理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
★什么是记忆?
一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。

三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。
1、如何保证数量?
① 选准一本与教材同步的辅导书或练习册。
② 做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。
③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
④每天保证1小时左右的练习时间。
2、如何保证质量?
①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。
②落实:不仅要落实思维过程,而且要落实解答过程。
③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。

四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
总而言之,只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,我们就一定能早日进入数学学习的自由王国。
回答者:乒乓跳豆 - 魔神 十六级 7-14 20:03
其他回答共 11 条
我个人觉得不是,虽然我从小就喜欢数学,记得小学有一个同学,刚转到我们班的时候她的数学是50分,一个学期过去,其摸考试她竟然考了90多分,全班第一,所以只要自己努力就行.
回答者:nana165 - 魔法学徒 一级 7-14 14:54

我也很喜欢数学,我觉得学数学最重要的是启蒙的时候你对数学有了兴趣,然后一直很开心的学下去,这样你才会学好数学!光勤奋是不够的,勤奋不是万能的,但没有勤奋又是万万不能的!好好培养对数学的兴趣,自己要有信心,一定能学好的!
回答者:evolcheng - 助理 二级 7-14 15:01

不论学什么,靠的都是努力,成功不是有一条规则
"成功=x+y+z”x=勤奋,y=少找借口,z=信心,
望你在人生的路上,能迈过这个坎
回答者:edison0001 - 魔法学徒 一级 7-14 15:04

有天赋是优势,没天赋也未必输!
回答者:kimi_hui - 秀才 二级 7-14 15:11

要的呀!!没有一点天赋是不行的
回答者:金の皇の海 - 助理 二级 7-14 15:14

有天赋学得快,没有就要比别人更勤奋。
回答者:玄色风26 - 试用期 一级 7-14 15:48

需要.
因为真正学到高数的时候,就会发现天赋是很重要的.

虽然不能说努力勤奋就不行,但是真正纯靠努力勤奋学的出人头地的毕竟是少数.
回答者:檀狂 - 试用期 一级 7-14 15:58

只要努力,什么都可以成真的
回答者:oO枫枞之心Oo - 魔法学徒 一级 7-15 10:26

有天赋,可能理解掌握起来更容易
但是不聪明的人多练几遍一样也能够会做的
回答者:超爱元元 - 试用期 一级 7-16 00:58

靠的就是天赋`!
回答者:宝宝和乐乐 - 试用期 一级 7-19 15:38

当然不是了!
如何学好数学1

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
如何学好数学2

高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。
有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。
至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。
l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。
3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。
4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。

答一送一:
如何在学习上占第一

学习上占第一,每个同学都可以做到。之所以你占不了第一,主要有两个原因:第一、生活方式、学习方法不正确,第二、没有坚强的毅力。在这里面毅力是第一重要的,学习方法是第二重要的。在现实生活中,全中国仍有70%以上的占第一的学生虽然占了第一,但他们并不是毅力最强的,或者说学习方法生活方式不是最好的。他们也许今天是第一,明天就不是了。也就是说,你如果按占第一的方法去学习、去锻炼,一般都会超过现有的第一。
辉煌的第一是不是要经过艰苦的努力才能得到呢?说它艰苦是因为“培养坚强的毅力”是世上最艰苦的工作,只有你具有了坚强的毅力才可能成为第一,当然正确的生活方式和学习方法也是特别重要的。在这里什么是坚强的毅力呢,只要你能按下面几点要求去做,而且每天都做记录,持之以恒,每天都不间断地坚持一个学期、一年、三年,那么你的毅力就足以达到占第一的要求了。在这项锻炼中就怕你中间有间断,风雨、心情、疾病、家务等等都不是你中断锻炼的理由。你要记住,学好学业是你学生生活中最重要的,没有什么工作的重要性会超过它。除了坚强的毅力,正确的学习方法和生活方式也是很重要的。
第一人人可以占,原来占第一的同学也不一定就比你更聪明多少,脑细胞也不一定比你多。爱迪生不是说过“天才是百分之九十九的汗水加上百分之一的灵感”吗?!所以你第一要过心理关,就是说:要坚信你一定能成功,一定会超过现有的第一,包括现在是第一的你自已。
第二、你要天天锻炼。没有一个健康的身体,你什么事也做不好,即使偶尔做好了,也不能长久。每天30分钟左右的锻炼一定要天天坚持。锻炼的形式多种多样,跑步、打乒乓球、打篮球、俯卧撑、立定跳远等等都可以。有些同学好面子,见到别人不跑步,怕自已跑别人看见了不好意思,那就错了,真正不好意思的是辛苦了几年考不上大学,是上了几年大学还要下岗。如果将来自已养活不了自已,那才是真正不好意思的。
第三、学习态度要端正。每次上课前,一定要把老师准备讲的内容预习好,把不好理解的、不会的内容做好标记,在老师讲到该处时认真听讲。如果老师讲了以后还不会,一定要再问老师,直到明白为止。当一个问题问了两遍三遍还不会时,一般的同学就不好意思问了,千万别这样,老师们最喜欢“不问明白誓不罢休”的性格了。上课时要认真听讲,认真思考,做好笔记。做笔记时一定要清楚,因为笔记的价值比课本还,将来的复习主要靠它。
课下首先要做的不是做作业,而是把笔记、课本上的知识点先学好,该记的内容一定把它背熟。这样会大大提高你做作业的速度,即平常说的“磨刀不误砍柴功”。做作业时应该独立思考,实在不能解决的问题,再和同学、老师商量。问同学时,不要问这道题结果是什么,而是要问“这道题究竟怎么做?”“这道题为什么这样做?”
第四、正确面对错误和失败。当有的知识你没有在课上学会、当你的练习做错时或者在考试中成绩太差时,你既不要报怨,也不要气馁,你应该正视这自已不愿得到的现实。没有学会不要紧,把该知识写到你的《备忘录》中,然后问同学问老师,再把正确的解释或结果,写到其它页上。错了题也是这样,考试失利不就是错的题多点吗,正确的方法是把原题抄到《备忘录》中,把正确的做法学会后,把做法和结果写到其它页上,如果能注上做该类题的注意事项,就会把你的学习效率又提高30%-60%。之所以把答案或解释写到其它页上,就是为了下次看知识点或错误的题目时,再动动脑筋,想想该知识点的理解和解释情况,再练练该题的做法和答案。错误和失败并不可怕,只要你能正视它,一切都会成为你成功的动力。
第五、记帐。你的学习一定要有一本帐,你什么时候做得好,记下来,什么时候错了题,记下来(注:帐本上只记“今天错题为《备忘录》××页×题)。课下几点几分学了英语,记录好;几点几分至几点几分学了物理记下来。把你生活中锻炼、学习的分分秒秒记录在你的帐本上,把你每次作业和考试中的正确题数、错误题数和错误题号(《备忘录》上的页号题号)一一记录在你的帐本上。把你每天学会的知识点都记录在帐本上,以备明天、后天再检查一下自已是否真正掌握了这些知识点。在帐本上过去了几天的知识点,你一定要学会并能熟练掌握。
帐本记录的是你学习、锻炼中每一个细节。这样记下来,在校生活中,每天约有一页32开纸的记录量,不在校时可能有两页32纸的记录量。在星期和假期里千万不能间断。把你的帐一天天积累起来,这就是你所走过的第一之路。
虽说在素质教育的今天学校不排名次,但学习出类拔萃是我们努力的目标,是我们考上高一级学校的必要条件,也是我们走向社会后,做好每一件工作的资本。同学们,去争取第一吧。如果你一年年按上面的要求做,你一定能占第一。
如果大家都这样去做,即使你占不了第一,一定是中国出类拔萃的学生,因为中国大多数的同学没有这样的毅力,没有这样好的学习方法和生活方式。同学们,为美好的明天奋斗吧!
===============================================
首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必 的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以 略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。

有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。

知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习,定理公式学习以及解题学习三个方面。学习数学概念,要善于抓住它的本质属性,也就是区别于这个概念和其他概念的属性;学习定理公式,要紧紧抓住定理方向的内在联系,抓住定理公式适用的范围及题型,做到得心应手地应用这些定理公式,数学解题实№上是在熟练掌握概念与定理公式的基础上解决矛盾,完成从“未知”向“已知”的转化。要着重学习各种转化方式,培养转化的能力。总而言之,在学习数学基础知识中,要注意把握知识的整体精髓, 悟其中的规律和实质,形成一个紧密联系的整体认识体系,以促进各种形式间的相互迁移和转化。同时,还要注意知识形成过程无处不隐含着人们在教学活动中解决问题的途径、手段和策略,无处不以数学思想、方法为指南,而这也是我们学习知识时最希望要学到的东西。

数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。

在数学学习中,要特别重视运用数学知识解决实№问题能力的培养。数学社会化的趋势,使得“大众数学”的口号席卷整个世界,有人认为未来的工作岗位是为已作好数学准备的人才提供的,这里所说的“已作好了数学准备”并不仅指懂得了数学理论,更重要的是学会了数学思想,学会了将数学知识灵活运用于解决现实问题中。培养数学应用能力,首先要养成将实№问题数学化的习惯;其次,要掌握将实№问题数学化的一般方法,即建立数学模型的方法,同时,还要加强数学与其他学科的联系,除与传统学科如物理、化学联系外,可适当了解数学在经济学、管理学、工业等方面的应用。

如果我们在数学学习中,既扎扎实实地学好了数学知识和技能,又牢固地掌握了数学思想和方法,而且能灵活应用数学知识和技能解决实№问题,那么,我们就走在了一条数学学习成功的大道上。

C. 为什么我们要学习数学

人为什么要学数学?其实很多人并不清楚,甚至存在许多认识误区。有学生认为,“数学除了买东西的时候有点用,考试的时候有点用,没有多大的实际用途。”还有学生认为,“学数学一切为了高考,没有高考就没有人会学这些没有用的东西。”其实,数学是一个意义的领域。

1、数学意义——科学的立场
数学一直是形成人类文化的主要力量,通过数学这面镜子可以了解一个时代的特征。古希腊数学家强调严密的推理,他们关心的并不是这些成果的实用性,而是教育人们去进行抽象的推理,激发人们对理想和美的追求。所以,古希腊创造了后世很难超越的优美文学,理性化的哲学,以及理想化的建筑与雕刻。中国古代数学崇尚实用,最大的缺点是缺少严格求证的思想。“数学和各种科学假说的数学化已经成为近代科学的脊梁骨”。一个时代的特征与这个时代的数学活动密切相关。17世纪以来,由于微积分的创立,借助微积分工具在寻求自然规律方面所取得的成功远远超出了天文学的领域。19 世纪,由于把微积分这个工具改进为严格的分析体系,使数学物理强有力的理论成为可能,最终导致了量子力学、相对论的诞生,使人们对物质和空间的基本性质有更深的了解。20 世纪 50 年代,数学的发展创造了计算机,数学从科学的幕后走向台前,数字化深入到了人类几乎所有的活动。
数学能像音乐一样,给人以巨大的心灵震撼。罗素在自传中这样写道:“我 11 岁时,我开始学习欧几里得几何学,哥哥做我的老师,这是我生活中的一件大事,就像初恋一样令人陶醉。我从来没有想象到世界上还有如此美妙的东西。”在人们的印象中,数学与艺术很少有共同之处,虽然它们都是人类智慧的结晶。然而,数学始终默默地伴随着艺术,为它提供丰富的灵感之源和坚实的创作支柱。数学能产生艺术的灵感,艺术也能使数学产生灵感。从斐波那契数列和圆周率的小数位数字,到四面体和麦比乌斯带,都可以作为艺术家创作的灵感。音乐是人类精神通过无意识计算而获得的愉悦享受。法国数学家傅立叶证明了:所有的声音,无论是噪音还是仪器发出的声音,复杂的还是简单的声音,都可以用数学方式进行全面的描述。傅立叶的证明具有深刻的哲学意义。美妙的音乐以令人意想不到的美妙方式得到了数学描述,从而,艺术中最抽象的领域能转换成最抽象的科学;而最富有理性的学问,也有合乎理性的音乐与其密切相联。所以,数学是推理中的音乐,而音乐则是感觉中的数学。数学和建筑间的紧密联系应该没有什么可惊奇的。数学一直是建筑师们取之不尽用之不竭的创造源泉,是建筑设计与创新的宝贵工具。
不仅自然科学,各门社会科学也同样地不断求助于数学。随着数学与其它科学之间关系的更深入的揭示,数学又获得了一种新的称谓——伙伴。美国数学家斯蒂恩对数学与其它学科作了这样的比喻:许多有学问的人,特别是科学家和工程师,把数学想象成一棵知识之树,公式、定理和结论就像挂在树上的成熟的果实,让路过的科学家采摘,用以丰富他们的理论。数学家则与之相反,他们视数学如迅速生长的热带雨林,需要从数学之外的世界吸取养分,同时它又奉献给人类文明丰富的、变化无穷的智慧动植物。数学对其它学科做出了许多贡献,同时,这些学科正用一些有趣的新型问题向数学家发出了挑战,这些问题又导致了新的应用,且越基本的数学其用处更广。可以想象,随着人类社会的发展,数学会成为最基本的学科,会成为所有科学的框架。如果采用后现代谚语来说,就是几乎没有什么东西能够避开数学的“文本”。可以说,如果我们的世界里数学突然被抽走,人类社会将顷刻崩溃;如果我们的世界里数学被冻结,人类文明将即刻倒退。没有数学的文明是不可以想象的。

2、数学意义——教育的立场
学作为人的基本素质,在古希腊社会尤其明显。希腊哲人以知识为善,追求真善美乃是希腊教的宗旨。柏拉图认为数学是具备公民资格的前提,人的灵魂受到数学的陶冶之后,就有可能超凡脱俗,回到圣洁至上的理念世界而得到拯救。接受训练而能以逻辑和数学进行推理的人,将更有可能逃出无知的洞穴。数学不仅是人的基本素质,数学还能提升智能,增进才能。柏拉图认为,那些天性擅长算术的人,往往也敏于学习其它一切学科;而那些反应迟缓的人,如果受了算术的训练,他们的反应也总会有所改善。柏拉图特别强调,几何学中高深的东西能够帮助人们较为容易地把握善的理念。不知道基本的数学语言,不理解基本的数学符号,不掌握基本的数学推理,不懂得基本统计图表,这样的人将不能适应现代社会的快速发展。在信息社会,数学作为现代人的基本素质,已经越来越被人们所认识。数学以它的思维性、理性精神和优美性成为当今社会文化中的一个基础组成部分。可以说,没有数学,我们几乎不能很好地生活;没有数学,我们几乎不能很好地工作;没有数学,我们几乎不能很好地思考;没有数学,我们几乎不能很好地交流;没有数学,我们几乎不能很好地欣赏。

通过数学的学习,“能够促进学生的学习态度、思维习惯、思维模式、思维策略等的发展,让每个学生面对全新的情景都能做出适当的回应”。传统实证主义知识观将知识描述成线性积累和价值中立,忽略知识创造中人的活动,忽视知识所蕴涵的伦理意义。然而,知识本质上是一种社会建构,它必然体现人的价值选择,表现人的伦理关怀。数学也不例外,对于数学来说,它可以促进人的下列优秀品质的形成。

第一,诚实正直,崇尚真理。计算、证明并不是一个简单的操作步骤或形式化过程,而是一系列的观点与洞察。数学结论对任何人都一样,必须接受理性法庭的裁决,对就是对,错就是错。数学计算、数学演绎、数学证明都不能靠投机取巧,而只能靠一步一步的计算与推理。通过数学的学习,可以培养诚实正直、以理服人、坚持真理、有错就改的优良品格。

第二,勤于思考,勇于创新。要启发人类这种独有的、高贵的创新能力,莫过于数学。没有哪一门学科能像数学这样集中、加速和强化人们的注意力。事实证明,数学家的成功并不在于他们的天赋有多高,而主要取决于他们的勤奋和创新。

第三,坚韧不拔,敢于攀登。几何中没有王者之路,数学研究需要有坚强的毅力。因为数学命题的证明犹如登山,只有那些坚忍不拔、勇于探索的人,才能达到胜利的彼岸。数学是一所优秀的思维学校,数学是一门睿智的训练学科,数学是一种抽象的思维模式。精确的数学语言让我们有条不紊地思考复杂的决策,而不是只凭轶事、猜测和雄辩。学习数学的人更能有效地进行思维,发展人的思维能力是数学重要的文化功能,没有数学就不会有有组织的逻辑思维。数学能使人们的思维方式严格化,养成有步骤地进行推理的习惯。
数学是打开机会大门的钥匙。数学不仅是科学的语言,而且以直接的方式为商业、财政、经济、国防做出贡献,为学生打开职业的大门。一个人懂得的数学越多,就会有更多的职业之门向他开放。今天,那些理解数学并且能做数学的人,将比那些不懂数学的人获得更多的机会。从保险公司统计员、系统分析家、营销专家、网络管理人,到金融分析家,等等。实际上,数学历来都在帮助教育当局甄别哪些学生应该得到社会的报酬这一点上起到重要的作用。在某种程度上,数学水平和能力的不同决定了一个人将来从事的职业和发展前景。在未来世界中,求职和晋升的最好机会将提供给那些有信心应付数学的人,作为科学和技术的基础,数学提供通向成功的钥匙。信息时代就是数学的时代,正如未来的科学家和工程师需要广泛的数学一样,未来的公民将需要极其多样的数学,以对付工作中大量以数学为基础的工具、设备和技术。当学生离开学校并进入工作生涯时,数学极大地决定了一个人能从事什么样的工作与不能从事什么样的工作。

在世界上所有的国家中,中小学的数学课程内容较为一致,具有突出的相似性。具体地说,各国选取的数学课程内容与社会的需求、数学的发展以及学生的发展密切相关。数学在课程中占据中心位置,在不同的国家或文化中,没有任何一门其它学科的教育时间有数学这样长。我们很少看到数学学得好而其它学科学得不好的学生。在中学里很少有这样的情况,即某个学生在数学上是第一名,而在其它学科上却属于最差的行列。反之,那些所谓“差生”,往往首先就是数学没有学好,数学对于这些学生而言竟然成了“筛子”。筛掉了他们的就业机会,筛掉了他们的发展机会。数学真正成了打开通向未来的大门,每个人的发展都依赖于数学教育的成功。在所有文明中,一代又一代的儿童学习数学以获得更加美好的生活。

3、对数学教育的启示

在数学课程改革的背景下,我们为什么要学习数学?数学对学生的发展意味着什么?数学到底要塑造学生什么?数学到底能塑造学生什么?这些问题看似平凡,实则非凡;看似简单,实则复杂;看似浅显,实则深远。其实,每个问题都是我们教育工作者必须弄清的数学教育哲学的基本问题。事实表明,无论是从人类文明的发展来看,还是从学生个人的发展来说,数学是一个不容忽视的意义的领域。数学是人类最高超的智力成就,是人类心灵最独特的创造,是人类文明的核心部分。数学是了解世界及其发展的主要钥匙之一。作为人类文明发展标志的数学,在人的发展中扮演着重要的角色。数学已成为个人参与社会的基本条件,每个人都需要学习数学。数学应该走进学生的生活世界,成为每个学生生活的组成部分,激发他们对生活的热爱,体现更多的人文关怀。数学应该促进学生的发展,震撼学生心灵,培养学生的好奇心,体现数学的文化价值。数学应该发展学生的能力,体现数学的思维价值。数学应该培养学生对美的追求,体现数学的艺术价值。从而,数学教学不是把数学各个领域的片段知识灌输给学生,不是把数学作为一个封闭系统,从那些完美的数学结论开始,而是从学生熟悉的现实生活、已有的数学经验开始,把数学作为一项人类的基本活动。应该少些强制,少些令人厌恶的机械训练。让学生思考!思考!再思考!教师不是为考试而教,学生不是为考试而学。数学不是无意义的符号,数学不是无意义的公式游戏,数学不是无意义的运算和推理。数学是一个意义的领域,数学并非虚无飘渺,其中萌动着思想的生命。今天,数学教育中的种种困惑与迷茫,都与数学意义的失落密切相关。走向意义的数学教育是时代的呼唤。在这里,数学意义不是一个逻辑概念,而是被理解为生命的表现。数学意义不是从文本中提炼出来的,而是从对话中创造出来的。数学意义蕴涵在运算和推理中,蕴涵在每一个数学概念的学习中,蕴涵在每一个数学定理的探究中,蕴涵在每一个数学问题的研究中。走向意义的数学教育要给每一个学生一片阳光,唤醒他们的心灵,成为学生难忘的人生经历。它让学生领略现代数学思想中令人鼓舞的概念,像夏天喝冰水那样令人清新。它让学生欣赏数学,感受数学定理与数学概念的美妙,像艺术那样令人振奋。它让学生发现优美定理、概念的形成过程创造出更有内涵、更有意义的数学文化,像呼吸那样顺乎自然。在数学教育中,当做题、考试、成绩成为数学教育关注的焦点时,数学就变成了一种无意义的诸多公式、定义、过程的罗列,数学意义——无论是科学意义还是教育意义——就离我们远去。然而,远离了意义的数学教育,也就从根本上远离了学生的生活。从而将数学知识局限于认识论的窠臼,片面强调数学知识的客观性、抽象性和确定性,遮蔽了数学知识所蕴涵的意义世界。所以,数学教育必须超越抽象的世界、符号的世界、逻辑的世界、知识的世界、绝对真理的世界以及升学工具的世界,迈向意义的世界。可以说,回归数学意义是每一个数学教育工作者神圣的使命。走向意义的数学教育理所当然应该成为新的教育方向,新的教育追求。

D. 数学对个人的生活和工作有什么意义该如何理解数学

数学的魅力,显然不在于纸面上的考试成绩,更不是被现在教育所淘汰的残次品所理解的完全可以被计算机取代的数字计算,而是那种能把复杂问题变简单的化繁为简的能力以及严密的形式逻辑推理能力。有这两种能力为基础,遇到任何领域的复杂问题都可以从容应对,条理分明、事半功倍,这才是数学为什么如此重要。数学运用更重要的是数学思想,我们将生活中的各种事件进行数学化处理,然后经过逻辑分析、推理计算,从而得出最优解,这就是数学思想,数学思想可以更好的帮助我们规划生活与工作。

E. 如何才能正确的理解数学

数学是逻辑性的科目

先把例题做会,做懂
再做习题,巩固理解
最后大量做题,达到熟练程度
进而,举一反三

F. 高中数学课程的性质是什么

数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展.数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用.数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。

数学教育作为教育的组成部分,在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面、在推动社会进步和发展的进程中起着重要的作用。在现代社会中,数学教育又是终身教育的重要方面,它是公民进一步深造的基础,是终身发展的需要。数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。

课程性质

高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。

高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。

高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。

高中数学课程是学习高中物理、化学、技术等课程和进一步学习的基础。同时,它为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。

课程的基本理念

构建共同基础,提供发展平台 高中数学课程具有基础性,它包括两方面的含义:第一,在义务教育阶段之后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养;第二,为学生进一步学习提供必要的数学准备。高中数学课程由必修系列课程和选修系列课程组成,必修系列课程是为了满足所有学生的共同数学需求;选修系列课程是为了学生的不同数学需求,它仍然是学生发展所需要的基础性数学课程。

提供多样课程,适应个性选择 高中数学课程具有多样性与选择性,使不同的学生在数学上得到不同的发展。为学生提供选择和发展的空间,为学生提供多层次、多种类的选择,以促进学生的个性发展和对未来人生规划的思考。

倡导积极主动、勇于探索的学习方式 高中数学课程倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程。同时,课程设立“数学探究”“数学建摸”等学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利的条件,以激发学生的数学学习兴趣,鼓励学生在学习过程中,养成独立思考、积极探索的习惯。力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展创新意识。

注重提高学生的数学思维能力 高中数学课程注重提高学生的数学思维能力,这是数学教育的基本目标之一。人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。这些过程是数学思维能力的具体体现,有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断。数学思维能力在形成理性思维中发挥着独特的作用。

发展学生的数学应用意识 当今知识经济时代,数学正在从幕后走向台前,数学和计算机技术的结合使得数学能够在许多方面直接为社会创造价值,同时,也为数学发展开拓了广阔的前景。高中数学课程提供基本内容的实际背景,反映数学的应用价值,开展“数学建摸”的学习活动,设立体现数学某些重要应用的专题课程。力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。

与时俱进的认识“双基” 随着时代的发展,特别是数学的广泛应用、计算机技术和现代信息技术的发展,数学课程设置和实施重新审视基础知识、基本技能和能力的内涵,形成符合时代要求的新的“双基”。

强调本质,注意适度形式化 形式化是数学的基本特征之一。在数学教学中,学习形式化的表达是一项基本要求,但是不能只限于形式化的表达,要强调对数学本质的认识, 高中数学课程力求返璞归真,努力揭示数学概念、法则、结论的发展过程和本质。

体现数学的文化价值 数学是人类文化的重要组成部分。数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,高中数学课程提倡体现数学的文化价值,并在适当的内容中提出对“数学文化”的学习要求,设立“数学史选讲”等专题。

注重信息技术与数学课程的整合 现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等方面产生深刻的影响。高中数学课程提倡实现信息技术与课程内容的有机整合,整合的基本原则是有利于学生认识数学的本质,鼓励学生运用计算机、计算器等进行探索和发现。

建立合理、科学的评价体系 现代社会对人的发展的要求引起评价体系的深刻变化。高中数学课程应建立合理、科学的评价体系,包括评价理念、评价内容、评价形式和评价体制等方面。评价既要关注学生数学学习的结果,也要关注他们数学学习的过程;既要关注学生数学学习的水平,也要关注他们在数学活动中所表现出来的情感态度的变化。

课程目标

高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:

1.知识

获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.情感态度与价值观

提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辨证唯物主义和历史唯物主义世界观。

3.能力

提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

课程具体目标中的知识、情感态度与价值观、能力三个维度在课程实施过程中是一个有机的整体。

模块简介

高中数学课程包括五个必修模块,每个模块2学分、36学时。选修课程由系列1,系列2,系列3,系列4组成。系列1包括2个模块,每个模块2学分、36学时;系列2则是为希望在理工、经济等方面发展的学生设置的,包括3个模块,每个模块2学分、36学时;系列3由6个专题组成,每个专题1学分、18学时;系列4由10个专题组成,每个专题1学分、18学时。

模块

必修

模块

必修1:

集合、函数概念与基本初等函数

集合论是得国数学家康托在19世纪末创立的,集合语言是现代数学的基本语言。使用集合语言,可以简洁、准确地表达数学的一些内容。高中数学课程只将集合作为一种语言来学习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力。

函数是描述客观世界变化规律的重要数学模型。高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的始终。学生将学习指数函数、对数函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。

必修2:

立体几何初步、平面解析几何初步

几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。人们通常采用直观感知、操作确认、思维论证、度量计算等方法认识和探索几何图形及其性质。三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求。

解析几何是17世纪数学发展的重要成果之一,其本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在本模块中,学生将在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解解决几何问题的能力。

必修3:

算法初步、统计、概率

算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。

统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。在本模块中,学生将在义务教育阶段学习统计与概率的基础上,通过实际问题情境,学习随机抽样、样本估计总体、线性回归的基本方法,体会有样本估计总体及其特征的思想;通过解决实际问题,较为系统地经历数据收集与处理的全过程,体会统计思维与确定性思维的差异。学生将结合具体实例,学习概率的某些基本性质和简单的概率模型,加深对随机现象的理解,能通过实验、计算器(机)模拟估计简单随机事件发生的概率。

必修4:

三角函数、平面上的向量、三角恒等变换

三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。在本模块中,学生将通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用。

向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。在本模块中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义。能用向量语言和方法表述和解决数学和物理学中的一些问题,发展运算能力和解决实际问题的能力。

三角恒等变换在数学中有一定的作用,同时有利于发展学生的推理能力和运算能力。在本模块中,学生将运用向量的方法推导基本的三角恒等变换公式,由此出发导出其他的三角恒等变换公式,并能运用这些公式进行简单的恒等变换

必修5:

解三角形、数列、不等式

学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并认识到运用它们可以解决一些测量和几何计算有关的实际问题。

数列作为一种特殊的函数,是反映自然规律的基本数学模型。在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。

不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。建立不等观念、处理不等关系与处理等量问题是同样重要的。在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。

选修模块

选修1-1:

常用逻辑用语、圆锥曲线与方程、导数及其应用

正确地使用逻辑用语是现代社会公民应该具备的基本素质无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思想。在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。

在必修课程学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。

微积分的创立是数学发展中的里程碑,它的发展及广泛应用开创了向近代数学过渡的新时期,它为研究变量与函数提供了重要的方法和手段。导数的概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。

选修1-2:

统计案例、推理与证明、数系扩充及复数的引入、框图

学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。归纳、类比是合情推理常用的思维方法。培养和提高学生的演绎推理或逻辑证明的能力是高中数学课程的重要目标。合情推理和演绎推理之间联系紧密、相辅相成。证明通常包括逻辑证明和实验、实验证明,数学结论的正确性必须通过演绎推理或逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。

数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生、发展的客观需求,复数的引入是中学阶段数系的又一次扩充。在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识、体会人类理性思维在数系扩充中的作用。

框图是表示一个系统各部分和各环节之间的图示,它的作用在于能够清晰地表达比较复杂的系统各部分之间的关系。框图已经广泛应用于算法、计算机程序设计、工业流程的表述、设计方案的比较等方面,也是表示数学计算与证明过程中主要逻辑步骤的工具,并将成为日常生活和各门学科中进行交流的一种常用表达方式。在本模块中,学生将学习用“流程图”“结构图”等刻画数学问题以及其他问题的解决过程;并在学习过程中,体验用框图表示数学问题解决过程以及事物发生、发展过程的优越性,提高抽象概括能力和逻辑思维能力,能清晰地表达和交流思想。

选修2-1:

常用逻辑用语、圆锥曲线方程、空间中的向量与立体几何

正确地使用逻辑用语是现代社会公民应该具备的基本素质无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思想。在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。

在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。

用空间向量处理立体几何问题,提供了新的视角。空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。在本模块中,学生将在学习平面向量的基础上,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想象能力和几何直观能力。

选修2-2:

导数及其应用、推理与证明、数系的扩充与复数的引入

微积分的创立是数学发展中的里程碑,它的发展及广泛应用开创了向近代数学过渡的新时期,它为研究变量与函数提供了重要的方法和手段。导数的概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。

“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。归纳、类比是合情推理常用的思维方法。培养和提高学生的演绎推理或逻辑证明的能力是高中数学课程的重要目标。合情推理和演绎推理之间联系紧密、相辅相成。证明通常包括逻辑证明和实验、实验证明,数学结论的正确性必须通过演绎推理或逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。

数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生、发展的客观需求,复数的引入是中学阶段数系的又一次扩充。在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识、体会人类理性思维在数系扩充中的作用。

选修2-3:

计数原理、统计案例、概率

记数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。在本模块中,学生将学习计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题。

学生将在必修课程学习概率的基础上,学习某些离散型随机变量分布列及其均值、方差等内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识。

学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

选修4-1:

几何证明选讲

几何证明选讲有助于培养学生的逻辑推理能力,在几何证明的过程中,不仅是逻辑演绎的程序,它还包含着大量的观察、探索、发现的创造性过程。本专题从复习相似图形的性质入手,证明一些反映圆与直线关系的重要定理,并通过对圆锥曲线性质的进一步探索,提高学生空间想象能力、几何直观能力和运用综合几何方法解决问题的能力。

选修4-2:

坐标系与参数方程

坐标系是解析几何的基础。在坐标系中,可以用有序实数组确定点的位置,进而用方程刻画几何图形。为便于用代数的方法刻画几何图形或描述自然现象,需要建立不同的坐标系。极坐标系、柱坐标系、球坐标系等是与直角坐标系不同的坐标系,对于有些几何图形,选用这些坐标系可以使建立的方程更加简单。

参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的又一种表示形式。某些曲线用参数方程表示比用普通方程表示更方便。学习参数方程有助于学生进一步体会解决问题中数学方法的灵活多变。

本专题是解析几何初步、平面向量、三角函数等内容的综合应用和进一步深化。极坐标系和参数方程是本专题的重点内容,对于柱坐标系、球坐标系等只作简单了解。通过对本专题的学习,学生将掌握极坐标和参数方程的基本概念,了解曲线的多种表现形式,体会从实际问题中抽象出数学问题的过程,培养探究数学问题的兴趣和能力,体会数学在实际中的应用价值,提高应用

G. 数学怎么理解

数学理解的核心是对基本概念及其所反映的数学思想方法的理解
记金华市高中新课程数学概念教学研讨会

进入高中新课程以来,如何在保持原有传统教学的优点的基础上,全面落实新课程理念,是目前摆在高中数学教学面前的难点问题,其焦点还是正确认识数学概念的地位,正确把握数学概念的教学。为让教师了解国际、国内对该问题的研究动向,促进概念教学方式的完善,金华市教育局教研室于2008年10月29日—30日在金华二中召开金华市高中新课程数学概念教学研讨会,全市300余位一线高中数学教师参加了会议。

会议由金华二中周建锋老师和陈巧芬老师提供了两堂精彩的研讨课(几类不同增长的函数模型(第1课时)、方程的根与函数的零点)。课后各县(市)教师代表就两节课的教学理念、概念的把握、教师的教、学生的学等方面,开诚布公地进行了点评。

对教师代表的评课,参会的金华市教育学会中学数学分会学术委员会成员和与会教师共同参与评价,产生了《金华市高中数学首届课堂教学评课评比》的获奖者。张扬平(磐安中学)、王 芳(义乌中学)、孔小明(金华一中)获一 等 奖;叶健明(兰溪三中) 、楼方红(东阳中学)、 俞少洪(武义一中)、郑旭军(浦江中学)、 黄志刚(永康明珠学校)获二等 奖。

会议特请人民教育出版社数学室主任章建跃作主旨报告《聚焦核心概念、思想方法的数学课堂教学设计》,报告结合了大量教学案例和对应教材的解读。报告精彩纷呈、引人入胜又发人深省。

章主任在报告中指出:

一、我们面临的现实课改迅猛推进

亟待解决的问题多多:新课程提倡的理念难把握;新教材的改革设计难适应;教学方式、学习方式的变革难跟上;课程改革与考试评价制度的改革不配套;等。

二、教学层面的问题

课堂教学抓不住数学概念的核心,没有前后一致、贯穿始终的数学思想主线,在学生没有基本了解数学概念和思想方法时就进行大量解题操练,导致教学缺乏必要的根基,教学活动不得要领,在无关大局的细枝末节上耗费学生宝贵时间,数学课堂中效益、质量“双低下”。学生花大量时间学数学,做无数的练习,但数学基础仍很脆弱。

教学过程“不自然”,强加于人,对学生学习兴趣与内部动机都有不利影响;缺乏问题意识,对学生的创新精神和实践能力培养不利;重结果轻过程,“掐头去尾烧中段” ,缺乏知识的归纳、概括过程,学习过程不完整,导致思维参与度不足;重解题技能、技巧轻普适性思考方法的概括,方法论层次的内容渗透不够,机械模仿多独立思考少,思维层次不高;讲逻辑而不讲思想,关注明确知识多,强调学科的思想方法少,对学生整体素养的提高不利。

三、教师层面的问题分析

对数学课程、教材的体系结构、内容及其组织方式把握不准,特别是对中学数学核心概念和思想方法的体系结构缺乏必要的了解;

对中学数学概念的核心把握不准确,对概念所反映的思想方法的理解水平不高;

只能抽象笼统地描述数学教学目标,导致教学措施无的放矢,对是否已经达成教学目标心中无数;

对自己设计的教学方案不能取得预期效果,不能从设计层面给出令人信服的解释,往往只把问题归咎于教学系统的复杂性;

缺乏有效的发现、分析和解决教学问题的方法,往往感到教学问题的存在而不知其所在,或者发现了问题而找不到原因,甚至发现了问题及其根源也找不出解决问题的有效方法;

采取的教学方法、策略和模式都比较单一,机械地套用一些已有的解决教学问题方案,缺乏根据教学问题和教学条件创建解决教学问题的新方法。

四、努力的方向——专业化

数学学科的专业素养

有较好的数学功底(教好数学的前提是自己先学好数学),对数学内容所反映的思想、精神有深入的体会和理解;懂得哪些数学知识对学生的发展具有根本的重要性;具有揭示数学知识所蕴含的科学方法和理性思维过程的能力和“技术”;等。

教育学科的专业素养:

一个人的可持续发展,不仅要有扎实的双基,而且要有积极的生活态度、主动发展的需求、终身学习的愿望、热情、能力和坚持性、健康向上的人生观和价值观。教师在这些方面对学生的影响力,就是教师的教育学科专业素养的最重要指标。

“两个素养”的结合

善于抓住数学的核心概念和思想方法,懂得削枝强干;善于打开凝结在数学知识中的数学家的思维活动,并有好的载体(如教学情景、典型例子、变式训练等)来展开这些数学思维活动;对数学知识中蕴含的价值观资源特别敏感,有挖掘这些资源并用与学生身心发展相适应的方式表述的能力,使数学知识教学与价值观影响有机整合。

五、从“理解数学”入手

提高概念理解水平:从表面到本质—把握概念的深层结构上的进步;从抽象到具体—对抽象概念的形象描述,解读概念关键词,更多的典型、精彩的例子;从孤立到系统—对概念之间的关系、联系的认识,有层次性、立体化的认识;等。

提高解读概念所反映的数学思想方法的能力

六、基于概念的核心、思想方法的教学设计框架

1.教学设计的基本线索

概念及其解析(概念的核心);

目标和目标解析;

教学问题诊断(达成目标已有条件和需要的新条件的分析);

教学过程设计;

目标检测的设计。

2.概念和概念解析

概念:内涵和外延的准确表达;

概念解析:重点是在揭示内涵的基础上说明概念的核心之所在;对概念在中学数学中的地位的分析,对内容所反映的思想方法的明确。在此基础上确定教学重点。

3.目标和目标解析

目标:用“了解”“理解”“掌握”及相应的行为动词“经历”“体验”“探究”等表述目标;

目标解析:对“了解”“理解”“掌握”以及“经历”“体验”“探究”的含义进行解析,一般的,核心概念的教学目标都应进行适当分解。

4.教学问题诊断分析

教师根据自己以往的教学经验,数学内在的逻辑关系以及思维发展理论,对本内容在教与学中可能遇到的障碍进行预测,并对出现障碍的原因进行分析,其中包括对概念学习的认知分析。在上述分析的基础上指出教学难点。

5.教学过程设计

强调教学过程的内在逻辑线索;

给出学生思考和操作的具体描述;突出核心概念的思维建构和技能操作过程,突出思想方法的领悟过程分析;

以“问题串”方式呈现为主,应当认真思考每一问题的设计意图、师生活动预设,以及需要概括的概念要点、思想方法,需要进行的技能训练,需要培养的能力,等;

根据内容特点设计教学过程,如基于问题解决的设计,讲授式教学设计,自主探究式教学设计,合作交流式教学设计,等。

6.目标检测设计

习题、练习方式的检测。要明确每一个(组)习题或练习的设计目的,加强检测的针对性、有效性。

注意防止一步到位,过早给综合题、难题有害无益;基础不够的题目更是贻害无穷——题目出不好是老师专业素养低的表现之一。

章主任在报告的最后强调:

数学理解的核心是对基本概念及其所反映的数学思想方法的理解。

围绕数学核心概念、思想方法进行教学;

在挖掘知识所蕴含的价值观资源上狠下功夫;

抓基础的含义是:第一,不断回到概念去,从基本概念出发思考问题、解决问题;第二,加强概念的联系性,从概念的联系中寻找解决问题的新思路。

“题型”、与“题型”对应的技巧是雕虫小技,无法穷尽。教学应追求解决问题的“根本大法”——基本概念所蕴含的思想方法。

会议还邀请特级教师朱恒元老师就如何进行概念教学介绍了自己的理解和做法,为会议画上了圆满的句号。

其实还是有点不懂你的问题!只能给你找了以上的资料,如果想探讨数学学习方法也可以问我,我很乐意回答!

阅读全文

与如何理解数学已经从幕后走到台前相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:738
乙酸乙酯化学式怎么算 浏览:1403
沈阳初中的数学是什么版本的 浏览:1349
华为手机家人共享如何查看地理位置 浏览:1041
一氧化碳还原氧化铝化学方程式怎么配平 浏览:883
数学c什么意思是什么意思是什么 浏览:1407
中考初中地理如何补 浏览:1298
360浏览器历史在哪里下载迅雷下载 浏览:700
数学奥数卡怎么办 浏览:1386
如何回答地理是什么 浏览:1022
win7如何删除电脑文件浏览历史 浏览:1054
大学物理实验干什么用的到 浏览:1483
二年级上册数学框框怎么填 浏览:1698
西安瑞禧生物科技有限公司怎么样 浏览:966
武大的分析化学怎么样 浏览:1246
ige电化学发光偏高怎么办 浏览:1336
学而思初中英语和语文怎么样 浏览:1649
下列哪个水飞蓟素化学结构 浏览:1422
化学理学哪些专业好 浏览:1485
数学中的棱的意思是什么 浏览:1056