① 小学数学图形移动的概念和步骤是什么
(1)平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点。
(2)平移的性质:
①对应点的连线平行(或共线)且相等
②对应线段平行(或共线)且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形(四个端点共线除外)
③对应角相等,对应角两边分别平行,且方向一致。
(3)用坐标表示平移:如果把一个图形各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形向右(或向左)平移a个单位长;如果把一个图形各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形向上(或向下)平移a个单位长。
(4)平移的条件:图形的原来位置、方向、距离
(5)平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对应点连线法、全等图形法。
(来源
图形的平移定义_中考网
http://www.zhongkao.com/e/20121112/50a0db7e498be.shtml
)
② 会数学的进来瞧一瞧!!什么叫数轴上的对应数点c的对应数是6,这说明他是就是4吗还是说明其他神马
数轴上的对应数就是一个数在数轴上的所对应的点,如1的对应点位数轴上的1
点c的对应点为六,那他就为六,说明他为正数。
如果我的回答对你有帮助,请采纳!
③ 八年级上册数学定义总结人教版
1 全等三角形的对应边、对应角相等
2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
5 边边边公理(SSS) 有三边对应相等的两个三角形全等
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
7 定理1 在角的平分线上的点到这个角的两边的距离相等
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
9 角的平分线是到角的两边距离相等的所有点的集合
10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
23 推论3 等边三角形的各角都相等,并且每一个角都等于60°
24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25 推论1 三个角都相等的三角形是等边三角形
26 推论 2 有一个角等于60°的等腰三角形是等边三角形
27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
28 直角三角形斜边上的中线等于斜边上的一半
29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
32 定理1 关于某条直线对称的两个图形是全等形
33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
38定理 四边形的内角和等于360°
39四边形的外角和等于360°
40多边形内角和定理 n边形的内角的和等于(n-2)×180°
41推论 任意多边的外角和等于360°
42平行四边形性质定理1 平行四边形的对角相等
43平行四边形性质定理2 平行四边形的对边相等
44推论 夹在两条平行线间的平行线段相等
45平行四边形性质定理3 平行四边形的对角线互相平分
46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
48平行四边形判定定理3 对角线互相平分的四边形是平行四边形
49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
50矩形性质定理1 矩形的四个角都是直角
51矩形性质定理2 矩形的对角线相等
52矩形判定定理1 有三个角是直角的四边形是矩形
53矩形判定定理2 对角线相等的平行四边形是矩形
54菱形性质定理1 菱形的四条边都相等
55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
56菱形面积=对角线乘积的一半,即S=(a×b)÷2
57菱形判定定理1 四边都相等的四边形是菱形
58菱形判定定理2 对角线互相垂直的平行四边形是菱形
59正方形性质定理1 正方形的四个角都是直角,四条边都相等
60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
61定理1 关于中心对称的两个图形是全等的
62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
64等腰梯形性质定理 等腰梯形在同一底上的两个角相等
65等腰梯形的两条对角线相等
66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
67对角线相等的梯形是等腰梯形
68平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
84 判定定理3 三边对应成比例,两三角形相似(SSS)
85 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
87 性质定理2 相似三角形周长的比等于相似比
88 性质定理3 相似三角形面积的比等于相似比的平方
89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
91圆是定点的距离等于定长的点的集合
92圆的内部可以看作是圆心的距离小于半径的点的集合
93圆的外部可以看作是圆心的距离大于半径的点的集合
94同圆或等圆的半径相等
95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
97到已知角的两边距离相等的点的轨迹,是这个角的平分线
98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
99定理 不在同一直线上的三点确定一个圆。
100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
102推论2 圆的两条平行弦所夹的弧相等
103圆是以圆心为对称中心的中心对称图形
104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
106定理 一条弧所对的圆周角等于它所对的圆心角的一半
107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
110定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
111①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
112切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
113切线的性质定理 圆的切线垂直于经过切点的半径
114推论1 经过圆心且垂直于切线的直线必经过切点
115推论2 经过切点且垂直于切线的直线必经过圆心
116切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
117圆的外切四边形的两组对边的和相等
118弦切角定理 弦切角等于它所夹的弧对的圆周角
119推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
120相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
124如果两个圆相切,那么切点一定在连心线上
125①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
126定理 相交两圆的连心线垂直平分两圆的公共弦
127定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
129正n边形的每个内角都等于(n-2)×180°/n
130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
131正n边形的面积Sn=pnrn/2 p表示正n边形的周长
132正三角形面积√3a/4 a表示边长
133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
134弧长计算公式:L=n兀R/180
135扇形面积公式:S扇形=n兀R^2/360=LR/2
136内公切线长= d-(R-r) 外公切线长= d-(R+r)
例题:
1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;
(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线
(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:
(1)图象在平面直角坐标系中的位置:
(2)增减性:
k>0时,y随x增大而增大;
k<0时,y随x增大而减小。
4、求一次函数解析式的方法
求函数解析式的方法主要有三种:
一是由已知函数推导,如例题1;
二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:
例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x的关系。
解:∵ y=2y1
y1=3x+2,
∴ y=2(3x+2)=6x+4,
即变量y与x的关系为:y=6x+4。
例2、解答下列题目
(1)(甘肃省中考题)已知直线 与y轴交于点A,那么点A的坐标是( )。
(A)(0,–3) (B) (C) (D)(0,3)
(2)(杭州市中考题)已知正比例函数 ,当x=–3时,y=6.那么该正比例函数应为( )。
(A) (B) (C) (D)
(3)(福州市中考题)一次函数y=x+1的图象,不经过的象限是( )。
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
分析与答案:
(1) 直线与y轴交点坐标,特点是横坐标是0,纵坐标可代入函数关系求得。
或者直接利用直线和y轴交点为(0,b),得到交点(0,3),答案为D。
(2) 求解析式的关键是确定系数k,本题已知x=-3时,y=6,代入到y=kx中,解析式可确定。答案D: y=-2x。
(3) 由一次函数y=kx+b的图象性质,有以下结论:
,
题目中y=x+1,k=1>0,则函数图象必过一、三象限;b=1>0,则直线和y轴交于正半轴,可以判定直线位置,也可以画草图,或取两个点画草图判断,图像不过第四象限。
答案:D。
例3、(辽宁省中考题)某单位急需用车;但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同。设汽车每月行驶x千米,应付给个体车主的月费用是y1元,应付给出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:
(1)每月行驶的路程在什么范围内时,租国营公司的车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?
分析:因给出了两个函数的图象可知一个是一次函数,一个是一次函数的特殊形式正比例函数,两条直线交点的横坐标为1500,表明当x=1500时,两条直线的函数值y相等,并且根据图像可以知道x>1500时,y2在y1上方;0<x<1500时,y2在y1下方。利用图象,三个问题很容易解答。
答:(1)每月行驶的路程小于1500千米时,租国营公司的车合算。
[或答:当0≤x<1500(千米)时,租国营公司的车合算]。
(2)每月行驶的路程等于1500千米时,租两家车的费用相同。
(3)如果每月行驶的路程为2300千米,那么这个单位租个体车主的车合算。
例4、(河北省中考题)某工厂有甲、乙两条生产线先后投产。在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30吨成品。
(1)分别求出甲、乙两条生产线投产后,各自总产量y(吨)与从乙开始投产以来所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;
(2)在如图所示的直角坐标系中,作出上述两个函数在第一象限内的图象;观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高?
分析:(1)根据给出的条件先列出y与x的函数式, =20x+200, =30x,当 = 时,求出x。
(2)在给出的直角坐标系中画出两个函数的图象,根据点的坐标可以看出第15天和25天结束时,甲、乙两条生产线的总产量的高低。
解:(1)由题意可得:
甲生产线生产时对应的函数关系式是:y=20x+200,
乙生产线生产时对应的函数关系式是:y=30x,
令20x+200=30x,解得x=20,即第20天结束时,两条生产线的产量相同。
(2)由(1)可知,甲生产线所对应的生产函数图象一定经过两点A(0,200)和
B(20,600);
乙生产线所对应的生产函数图象一定经过两点O(0,0)和B(20,600)。
因此图象如右图所示,由图象可知:第15天结束时,甲生产线的总产量高;第25天结束时,乙生产线的总产量高。
例5.直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。
分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。例如y=2x,y=2x+3的图象平行。
解:∵ y=kx+b与y=5-4x平行,
∴ k=-4,
∵ y=kx+b与y=-3(x-6)=-3x+18相交于y轴,
∴ b=18,
∴ y=-4x+18。
说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0,b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。
例6.直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。
解:∵ 点B到x轴的距离为2,
∴ 点B的坐标为(0,±2),
设直线的解析式为y=kx±2,
∵ 直线过点A(-4,0),
∴ 0=-4k±2,
解得:k=± ,
∴直线AB的解析式为y= x+2或y=- x-2。
说明:此例看起来很简单,但实际上隐含了很多推理过程,而这些推理是求一次函数解析式必备的。
(1)图象是直线的函数是一次函数;
(2)直线与y轴交于B点,则点B(0,yB);
(3)点B到x轴距离为2,则|yB|=2;
(4)点B的纵坐标等于直线解析式的常数项,即b=yB;
(5)已知直线与y轴交点的纵坐标yB,可设y=kx+yB;
下面只需待定k即可。
三、提高与思考
例1.已知一次函数y1=(n-2)x+n的图象与y轴交点的纵坐标为-1,判断y2=(3- )xn+2是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。
解:依题意,得
解得n=-1,
∴ y1=-3x-1,
y2=(3- )x, y2是正比例函数;
y1=-3x-1的图象经过第二、三、四象限,y1随x的增大而减小;
y2=(3- )x的图象经过第一、三象限,y2随x的增大而增大。
说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。
例2.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式。
分析:自画草图如下:
解:设正比例函数y=kx,
一次函数y=ax+b,
∵ 点B在第三象限,横坐标为-2,
设B(-2,yB),其中yB<0,
∵ =6,
∴ AO•|yB|=6,
∴ yB=-2,
把点B(-2,-2)代入正比例函数y=kx,得k=1,
把点A(-6,0)、B(-2,-2)代入y=ax+b,
得
解得:
∴ y=x, y=- x-3即所求。
说明:(1)此例需要利用正比例函数、一次函数定义写出含待定系数的结构式,注意两个函数中的系数要用不同字母表示;
(2)此例需要把条件(面积)转化为点B的坐标。这个转化实质含有两步:一是利用面积公式 AO•
BD=6(过点B作BD⊥AO于D)计算出线段长BD=2,再利用|yB|=BD及点B在第三象限计算出yB=-2。若去掉第三象限的条件,想一想点B的位置有几种可能,结果会有什么变化?(答:有两种可能,点B可能在第二象限(-2,2),结果增加一组y=-x, y= (x+3)。 (有答案,自己去看吧)
1 全等三角形的对应边、对应角相等
2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
5 边边边公理(SSS) 有三边对应相等的两个三角形全等
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
7 定理1 在角的平分线上的点到这个角的两边的距离相等
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
9 角的平分线是到角的两边距离相等的所有点的集合
10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
23 推论3 等边三角形的各角都相等,并且每一个角都等于60°
24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25 推论1 三个角都相等的三角形是等边三角形
26 推论 2 有一个角等于60°的等腰三角形是等边三角形
27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
28 直角三角形斜边上的中线等于斜边上的一半
29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
32 定理1 关于某条直线对称的两个图形是全等形
33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
38定理 四边形的内角和等于360°
39四边形的外角和等于360°
40多边形内角和定理 n边形的内角的和等于(n-2)×180°
41推论 任意多边的外角和等于360°
42平行四边形性质定理1 平行四边形的对角相等
43平行四边形性质定理2 平行四边形的对边相等
44推论 夹在两条平行线间的平行线段相等
45平行四边形性质定理3 平行四边形的对角线互相平分
46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
48平行四边形判定定理3 对角线互相平分的四边形是平行四边形
49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
50矩形性质定理1 矩形的四个角都是直角
51矩形性质定理2 矩形的对角线相等
52矩形判定定理1 有三个角是直角的四边形是矩形
53矩形判定定理2 对角线相等的平行四边形是矩形
54菱形性质定理1 菱形的四条边都相等
55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
56菱形面积=对角线乘积的一半,即S=(a×b)÷2
57菱形判定定理1 四边都相等的四边形是菱形
58菱形判定定理2 对角线互相垂直的平行四边形是菱形
59正方形性质定理1 正方形的四个角都是直角,四条边都相等
60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
61定理1 关于中心对称的两个图形是全等的
62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
64等腰梯形性质定理 等腰梯形在同一底上的两个角相等
65等腰梯形的两条对角线相等
66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
67对角线相等的梯形是等腰梯形
68平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
69 推论1 经过梯形一腰的中点与底平行的直线,必平分
④ 初二数学中考知识点归纳
学习需要制定详细的计划,计划本身对大家有较强的约束和督促作用,计划对学习既有指导作用,又有推动作用。制定好的 学习计划 ,是提高工作效率的重要手段。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。
初二上学期数学知识点归纳
分式方程
一、理解定义
1、分式方程:含分式,并且分母中含未知数的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。
(2)解这个整式方程。
(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。
(4)写出原方程的根。
“一化二解三检验四 总结 ”
3、增根:分式方程的增根必须满足两个条件:
(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;(4)验根;
注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
分式方程检验 方法 :将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
5、分式方程解实际问题
步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。
二、轴对称图形:
一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。
1、轴对称:
两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。
2、轴对称图形与轴对称的区别与联系:
(1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
3、轴对称的性质:
(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
三、用坐标表示轴对称
1、点(x,y)关于x轴对称的点的坐标为(x,-y);
2、点(x,y)关于y轴对称的点的坐标为(-x,y);
3、点(x,y)关于原点对称的点的坐标为(-x,-y)。
四、关于坐标轴夹角平分线对称
点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)
点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)
八年级 上册数学知识点
一、在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念
1、平面直角坐标系
在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念
对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征
(1)、各象限内点的坐标的特征
点P(x,y)在第一象限:x;0,y;0
点P(x,y)在第二象限:x;0,y;0
点P(x,y)在第三象限:x;0,y;0
点P(x,y)在第四象限:x;0,y;0
(2)、坐标轴上的点的特征
点P(x,y)在x轴上,y=0,x为任意实数
点P(x,y)在y轴上,x=0,y为任意实数
点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点
(3)、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等
点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数
(4)、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
(5)、关于x轴、y轴或原点对称的点的坐标的特征
点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)
点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)
点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)
初二数学 复习方法
按部就班
数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
强调理解
概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
基本训练
学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
重视错误
订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
平时的数学学习:
○1课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.
○2让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.
○3课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.
○4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.
初二数学中考知识点归纳相关 文章 :
★ 初中数学知识点整理:
★ 初中数学基础知识整理归纳
★ 中考数学知识点总结最全提纲
★ 初中数学知识点总结大全
★ 初中数学知识点总结梳理
★ 初三数学知识点考点归纳总结
★ 初中数学基础知识点归纳总结
★ 初中数学知识点总结大全
★ 初中数学知识点总结归纳
⑤ 初2数学 对应点是什么意思
这个不好说,举个例子,两个相似三角形,如果abc相似于def,那么a与d是对应点
⑥ 小学数学中旋转的正确定义是什么
在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。
这个定点叫做旋转中心,旋转的角度叫做旋转角,如果一个图形上的点A经过旋转变为点A',那么这两个点叫做旋转的对应点。
(6)数学什么叫做对应点扩展阅读
旋转的性质——
图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,
①对应点到旋转中心的距离相等。
②对应点与旋转中心所连线段的夹角等于旋转角。
③旋转前、后的图形全等,即旋转前后图形的大小和形状没有改变。
④旋转中心是唯一不动的点。
⑦ 数学的衍生点是什么意思
数学的衍生点也是学习数学里的,更多的关于数学的知识和理解的东西。
⑧ 对应点是什么意思呀
动)一个系统中某一项跟另一系统中某一项相当:~规律。(形)针对某种情况做出相应的(办法):做出~决定|采取~措施。
释义:一个相对的关系,两者近视可视作能互相对换替代。
比喻在一种事物与另一事物的情况一致。
例:对应原理——丹麦物理学家N.H.D.玻尔提出的一条从原子的经典理论过渡到量子理论的原则。针对某一情况下,与某一情况相应的(做法)。例:对应量——分数乘法应用题的数学名词。
⑨ 数学中对应的点是什么意思
在几何学、拓扑学以及数学的相关分支中,对应的点用于描述给定空间中的 1 种特别的对象,在空间中有类似于体积、面积、长、宽、高的类似物。1 个点是 1 个 0 维的对象。点作为最简单的图形概念,通常作为几何学、矢量图形和其他领域中最基本的组成部分。
点是无法被定义的。试图去定义点就会陷入重复定义、逆逻辑定义的深渊。点作为原始概念的同时也具有原始概念的性质。
比如,把平行四边形定义为两组对边分别平行的四边形,因此就必须先对四边形、平行以及对边进行定义。定义四边形时,应先对多边形及边进行定义,又必须先定义折线,故必须先要对点和直线进行定义。
但是,在一般的初等几何中,点和直线都无法再用已被定义过的概念进行定义,它们都是原始概念。在数学中,点、直线、平面、集合,空间、数、量等都是原始概念。
对应的点性质:
1、不可定义性:定义无效;
2、确定性:任意 1 个点都可以用有序数对精确地定位;
3、唯一性:1 组有序数对能且只能定位 1 个点;
4、互异性:任意两个点都是不同的对象。
⑩ 初一数学坐标上的对应的点是什么意思
额。。。。。。知道XY的横坐标和纵坐标吧,,,,如﹙5,6﹚,,,5就是横坐标,6就是纵坐标,把他往坐标系一代 一定能得到一个点,这个点就是5,6在坐标系的对应的点