㈠ 自行车里的数学的计算公式
蹬一圈走多远=前齿轮齿数÷后齿轮齿数×后轮(或前轮)的周长
㈡ “自行车里的数学”是什么意思
自行车里也有数学。比如:自行车有圆形。车轮大,转的圈数少,走的快。车轮小,转的圈数多,走的慢。
㈢ 关于自行车的数学知识
前进的路程=车轮周长×圈数
车轮周长 =车轮直径×圆周率
教学目标:
1、运用所学的圆、比例等知识解决问题;了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
2、通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力
3、经历解决问题的基本过程,了解数学与生活的密切关系。
重点难点:
运用所学知识解决实际问题。
教学过程:
一、揭示课题
1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2、自行车里会有数学问题吗?想一想。
二、研究普通自行车的速度与内在结构的关系
1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。
2、分析问题
(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。
(2)讨论:前齿轮转一圈,后齿轮转几圈?
前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数
建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数)
(2)分组收集所需要的数据,带入上述模式,求出答案。
4、汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。
三、研究变速自行车能组合出多少种速度?
1、提出问题:变速自行车能组合出多少种速度?
(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)
(2)根据这个结构,可以组合出多少种速度?
2、分析问题,求解,汇报。
3、蹬同样的圈数,哪种组合使自行车走得最远?
四、课堂作业
1、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?
2、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)
五、课堂小结 [自行车里的数学]
1、踏板蹬一圈,是不是车轮也走一圈?
2、踏板蹬一圈,所走的路程与什么有关?
最佳答案
踏板蹬一圈,是不是车轮也走一圈?
不是,因为踏板所带动的大轮与自行车后轮上的飞轮大小是不同的,所以当踏板转一圈时,后轮要轮上5-6圈.
踏板蹬一圈,所走的路程与什么有关?
与自行车的轮胎直径有关,就是我们说的20、24、26、28寸
自行车里的学问可真大,你还能提出一些数学问题并解决吗?
㈣ 自行车里有哪些数学
知识与技能:巩固比例知识,了解普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。
过程与方法:经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法。
情感态度与价值观:加深学生对所学知识及其相互关系的理解。培养学生学以致用,做事认真,用数学眼光透视周围事物,增强数学意识。
教学重难点
引导学生理解变速自行车能变速的原理。
教学过程
一、揭示课题
1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2、自行车里会有数学问题吗?想一想。
二、研究普通自行车的速度与内在结构的关系
1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。
2、分析问题
(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。
(2)讨论:前齿轮转一圈,后齿轮转几圈?
前齿轮转的圈数×
前齿轮的齿数=后齿轮转的圈数×
后齿轮的齿数
3、建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数
:后齿轮的齿数)
(2)分组收集所需要的数据,带入上述模式,求出答案。
4、汇报结果。
各小组展示并解释本组的研究过程和结果,在比较结果。
三、研究变速自行车能组合出多少种速度?
1、提出问题:变速自行车能组合出多少种速度?
(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)
(2)根据这个结构,可以组合出多少种速度?
2、分析问题,求解,汇报。
3、蹬同样的圈数,哪种组合使自行车走得最远?
四、学以致用
一辆变速自行车有2个前齿轮,分别有46和38个齿,有4个后齿轮,分别有20、16、14、12个齿,车轮直径66cm。小明从家到学校有一段平路和不是很陡的上坡路。平路1000米,上坡800米,小明如何使用变速车比较合理?小明骑车走这段平路至少蹬多少圈?
五、课堂小结
自行车里的学问可真大,你还能提出一些数学问题并解决吗?
[自行车里的数学]
1、踏板蹬一圈,是不是车轮也走一圈?
2、踏板蹬一圈,所走的路程与什么有关
3检测
(1)、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?
(2)、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)
㈤ 自行车里的数学
1.自行车中,前轮受到的摩擦力向后,后轮受到的摩擦力向前,后轮推前轮。
2.一般自行车大齿轮为主动轮,通过链条传动带动小齿轮
3.齿轮的大小时前后轮传动比,根链条没关系。传动比=前齿轮齿数/后齿轮齿数
4.变速自行车后面的齿轮是在改变后齿轮的齿数,根据3的公式改变传动比
5.踏板转一圈=前齿轮转一圈=后齿轮*传动比=轮胎*传动比
路程=轮胎周长*踏板圈数*传动比
注:以上传动比=前齿轮齿数/后齿轮齿数=前齿轮周长/后齿轮周长
㈥ 自行车里的数学,有什么数学知识
1.自行车里也有数学,比如轮胎的半径直径,还有轮胎的厚度,都需要经过计算,还有轮胎的质量。
2.一辆好骑便宜轻便自行车需要经过设计才能获得。
㈦ 自行车的构成运用了哪些数学原理
稳定三角形、平衡力。
㈧ 自行车里有哪些数学
自行车是我们生活中常用的交通工具,蕴含在自行车中的数学关系或者数学现象非常之多,大体可以从如下几个方面来阐述:
一、形状层面
在自行车机构上,存在数学中的几种集合图形,如圆、三角形、四边形等,我们可以用圆的半径、直径计算周长,进而进行行进距离的测量;三角形、四边形可以计算周长;
车身重量;我们可以用单个车身重量,计算多辆车的总总量;
载重量;可以测算自行车的负荷范围;
车圈是圆形,可以抽象出圆与直线的位置关系;
两个车圈都是圆,可以抽象出圆与圆的位置关系;
飞轮与后圈是同心圆,用于计算飞轮与车圈之间的关系;
牙盘属于主动轮,飞轮属于从动轮,也可以用于计算速度、链条的长度等;
二、使用层面
1.车辆在行驶过程中,存在“路程=速度×时间”相等关系;
2.行驶过程中,如果处于静风状态,我们定义为车辆速度,当出现风的时候,有顺风和逆风两种状态,则有:顺风速度=风的速度+静风车的速度;逆风速度=静风车的速度-风的速度;
我们要认真观察和体会自行车中还有更多的数学,只有通过经历、观察、思考,才能得到更加全面的数学知识。
㈨ 自行车里的数学公式
前齿数*转数=总齿数=后齿数*转数、后齿轮转数=前齿轮齿数/后齿轮齿数、前进的路程=车轮周长×圈数、车轮周长 =车轮直径×圆周率
㈩ 自行车里的数学有哪些
知识与技能:巩固比例知识,了解普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。
过程与方法:经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法。
1.除了早期的自行车以外,目前几乎所有自行车都是后轮驱动,前轮只起到诱导转向的作用(前轮其实还有很多功能,但是就骑行本身而言是转向作用)
2.牙盘和中轴同轴,踏板带动中轴旋转时也带动了牙盘旋转,牙盘通过链条把动力传动到飞轮使其旋转,也就是“大齿轮带动小齿轮”(注意不是推动)
3.牙盘或飞轮的大小和链条无关,链条只是单纯起到传动作用
最后两个问题合起来答
踏板、中轴、牙盘都在一个轴心上,所以踏板转一圈牙盘也转一圈;
牙盘的齿数和飞轮的齿数是成比例的,牙盘的齿数是飞轮齿数的N倍,那么牙盘旋转一圈飞轮就旋转N圈;
飞轮、后轴、后轮在同一轴心,飞轮转一圈后轮也旋转一圈;
变速车的牙盘组由多个大小各异的牙盘组成、飞轮组也由多个大小各异的飞轮组成,不同大小的牙盘带动不同大小的飞轮就会有不同的速率,起到的就是变速作用。
来实际计算一下(以九段变速系统配26×2.0外胎为例,
牙盘齿数:大盘44、中盘32、小盘22
飞轮齿数:小飞11、八飞12、七飞14、六飞16、五飞18、四飞21、三飞24、二飞28、大飞32
外胎周长:206cm)
大盘带小飞,踏板转一圈后轮转四圈,前行距离是824cm(计算方法是:44÷11×206=824,下同);
小盘带小飞,踏板转一圈后轮转两圈,前行距离是412cm;
小盘带大飞,踏板转一圈后轮转0.69圈,前行距离是142.14cm
最后再说一句:牙盘齿数除以飞轮齿数得出的商叫做“传动比”,在相同的蹬踏频率下传动比越大骑行速度越快,但是也越费力,适合平地冲刺;同样的道理,传动比越小速度越慢,但是也越省力,适合爬坡。
逆风速度=风速-静风速度
较大的,根据W=F*S知,做功一定时(自行车从坡下到坡上),只有增大距离S ,才能省力F 。 它的作用是,自行车走相同的路程,你却要多蹬几圈。
一个人步行每小时5千米,每千米为12分钟
骑自行车每1千米比步行少用8分钟,骑自行车每1千米为4分钟 那么骑自行车的速度是60/4=15千米/H
15/5=3
骑自行车的速度是步行速度的3倍
踏板蹬一圈,是不是车轮也走一圈?
不是,因为踏板所带动的大轮与自行车后轮上的飞轮大小是不同的,所以当踏板转一圈时,后轮要轮上5-6圈.
踏板蹬一圈,所走的路程与什么有关?
与自行车的轮胎直径有关,就是我们说的20、24、26、28寸.
1、前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数
2、蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数)
1.这是指前后轮链条转动的长度是一样的(涉及到一个线速度的概念)
2.涉及到角速度概念 后轮和后齿轮转动的圈数是一样的吧 那么只要求圈数就可以了 二前后齿轮走的路程是一样的 这样带进去就很简单了
圆、圆与圆的位置关系、圆的公切线、三角形的稳定性、正多边形、(线与线的相交、平行、垂直)等
Question:
1、踏板蹬一圈,是不是车轮也走一圈?
2、踏板蹬一圈,所走的路程与什么有关?
一个人步行每小时5千米,每千米为12分钟
骑自行车每1千米比步行少用8分钟,骑自行车每1千米为4分钟 那么骑自行车的速度是多少?
一个人步行每小时5千米,每千米为12分钟
骑自行车每1千米比步行少用8分钟,骑自行车每1千米为4分钟 那么骑自行车的速度是60/4=15千米/H
15/5=3
骑自行车的速度是步行速度的3倍
一辆自行车车轮直径60厘米,如果这种自行车飞轮有14齿,链轮有42齿,要达到每小时12千米的车速,骑车人每分钟应踏多少圈?
42/14=3
也就是说,人每登一圈,后面的轱辘就是三圈
又:自行车车轮直径60厘米,所以车轮的周长是pai*60=60pai厘米
一分钟走过的路程是12千米/小时=12*1000/60分=200米
200*100厘米/60pai=1000/3pai圈
链轮在一分钟内的圈数是:(1000/3pai)/3=1000/9pai约等于35.39圈(所以答案应该是整数是36圈)