导航:首页 > 数字科学 > 数学4x是什么教学目标

数学4x是什么教学目标

发布时间:2023-01-15 01:14:07

Ⅰ 六年级数学下册第四单元正反比例、比例尺应用题

正反比例的应用题

1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?

2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?

3、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?

4我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时?

5、一种铁丝,7.5米长重3千克,现在有19.5米长的这种铁丝,重多少千克?

6、汽车在高速公路上3小时行240千米,照这样计算,5小时行多少千米?

7、修一条公路,4天修了200米,照这样计算,又修了6天,又修了多少米?

8、小明读一本书,每天读12页,8天可以读完。如果每天多读4页,几天可以读完?

9、今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?

10、农场用3辆拖拉机耕地,每天共耕225公顷,照这样速度,用5辆同样拖拉机,每天共耕地多少公顷?

11、一艘轮船,从甲地从开往乙地,每小时航行20千米,12小时到达,从乙地返回甲地时,每小时多航行4千米,几小时可以到达?

12、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?

13、学校计划买54张桌子,每张30元,如果这笔钱买椅子,可以买90张,每张椅子多少钱?

14、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?

15、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?

16、一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。(5分)

17、地图上的26厘米,在比例尺为1∶1300000的地图上约是多少千米?(5分)

18、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?

19、用一批纸装订同样的练习本,如果每本30页,可以装订80本。如果每本页数减少20%,这批纸可以装订多少本?

20、某印刷厂计划四月份印刷课本20000本,结果8天就印刷了5600本,照这样速度,四月份能印多少本?

21、食堂有一批煤,计划每天烧105千克可以烧30天。改进烧煤技术后,每天烧煤90千克,这批煤可以多烧多少天?

22、跃进机床厂原计划30天制造机床200台,结果做20天就只差40台没有做,照这样计算,可以提前几天完成任务?

23、农场挖一条水渠,头5天挖了180米,照这样速度,又用了16天挖完这条水渠。这条水渠全长多少米?

24.在比例尺是1:6000000的地图上,量得两地距离是5厘米,甲乙两车同时从两地相向而行,3小时后两车相遇。已知甲乙两车的速度比是2:3,求甲乙两车的速度各是多少千米?

25、一幅地图,图上20厘米表示实际距离10千米,求这幅地图的比例尺?

25、一列火车从甲地开往乙地,5小时行了350千米,照这样计算,共要行9小时。甲乙两地相距多少千米?

26、英华小学有一块长120米、宽80米的长方形操场,画在比例尺为

1 :4000的平面图上,长和宽各应画多少厘米?(6分)

27、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)

28、同学们做操,每行站20人,正好站18行。如果每行站24人,可以站多少行?(用比例方法解)

29、飞机每小时飞行480千米,汽车每小时行60千米。飞机行4小时的路程,汽车要行多少小时?(用比例方法解)

30、修一条公路,每天修0.5千米,36天完成。如果每天修0.6千米,多少天可修完?(用比例方法解)

31、一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)

32、一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用

40天完成任务,每天应装多少台?(用比例方法解)

33、生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)

34、小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本?

35、甲乙两地在比例尺是1:20000000的地图上长4厘米,乙丙两地相距500千米,画在这幅地图上,应画多长?一辆汽车车以每小时200千米的速度从甲地经过乙地,去丙地需要多少小时?

参考答案

1.正比例

20:320=42:X

X=672

2.反比例

0.25X=0.16×275

X=176

3.正比例

60:=X:6

X=90

4.正比例

3:3.6=20:X

X=24

5.正比例

3:7.5=X:19.5

X=7.8

6.正比例

240:3=X:5

X=400

7.正比例

200:4=X:6

X=300

8.反比例

12+4=16(页)

16X=12×8

X=6

9.反比例

4X=200×6

X=300

10.正比例

225:3=X:5

X=375

11.反比例

20+4=24(千米)

20×12=24X

X=10

12.正比例

6.5t=6500kg

13:100=6500:X

X=50000

50000kg=50t

13.反比例

90X=54×30

X=18

14.反比例

40X=20×60

X=30

15.正比例

3:1.2=X:4.8

X=12

16.4cm : 5mm

=40mm : 5mm

=8:1

17.26×1300000=33800000cm=338km

18.正比例

450-330=120(个)

120:8=450:x

X=30

19.反比例

30×(1-20%)=24(页)

30×80=24x

X=100

20.正比例

四月份有30天

5600:8=x:30

X=2100

21.反比例

90x=105×30

X=35

35-30=5(天)

22.正比例

200-40=160(台)

160:20=200:x

X=25

30-25=5(天)

23.正比例

180:5=x:(16+5)

X=756

24.5×6000000=30000000cm=300km

300÷3=100km/h

甲:100÷5×2=40km/h

乙:100÷5×3=60km/h

25.20cm:10km=20:1000000=1:50000

26.120m=12000cm 80m=8000cm

长:12000÷4000=3cm

宽:8000÷4000=2cm

27.反比例

150x=20x8

X=6.4

28.反比例

24x=20x18

X=15

29.反比例

60x=480x4

X=32

30.反比例

0.6x=0.5x36

X=30

31.正比例

100t=100000kg

500:15=100000:x

X=3000

32.反比例

40x=50x60

X=75

33.反比例

160+80=240(个)

240x=160x15

X=10

15-10=5(天)

34.正比例

4,8:4=3.6:x

X=3

35.500km=50000000cm 50000000÷20000000=2.5cm

4x20000000=80000000=800km

(800+500)÷200=6.5h

拓展阅读: 正反比例的意义小学六年级数学教案

教学目标

1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.

2.通过观察、比较、归纳,提高学生综合概括推理的能力.

3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育.

教学重难点

理解正反比例的意义,掌握正反比例的变化的规律.

教学过程

一、导入新课

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的.和剩下的是两种相关联的量?

教师板书:两种相关联的量

(三)教师谈话

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学

(一)成正比例的量

例1.一列火车行驶的时间和所行的路程如下表:

时间(时):路程(千米)

1 :90

2 :180

3 :270

4 :360

5 :450

6 :540

7 :630

8 :720

1.写出路程和时间的比并计算比值.

(1) 2表示什么?180呢?比值呢?

(2) 这个比值表示什么意义?

(3) 360比5可以吗?为什么?

2.思考

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

3.小结:有什么规律?

Ⅱ 有理数的乘法数学教案

作为一名老师,时常需要编写教案,教案有助于顺利而有效地开展教学活动。怎样写教案才更能起到其作用呢?以下是我为大家收集的有理数的乘法数学教案,欢迎大家分享。
有理数的乘法数学教案1
教学目标

1。理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2。能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3。三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4。通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5。本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

重点:

是否能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

难点:

理解有理数的乘法法则。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

(二)知识结构

(三)教法建议

1。有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2。两数相乘时,确定符号的依据是“同号得正,异号得负”。绝对值相乘也就是小学学过的算术乘法。

3。基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4。几个数相乘,如果有一个因数为0,那么积就等于0。反之,如果积为0,那么,至少有一个因数为0。

5。小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6。如果因数是带分数,一般要将它化为假分数,以便于约分。

教学设计示例

有理数的乘法(第一课时)

教学目标

1。使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;

2。通过有理数的乘法运算,培养学生的运算能力;

3。通过教材给出的行程问题,认识数学来源于实践并反作用于实践。

教学重点和难点

重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

难点:有理数乘法法则的理解。

课堂教学过程设计

一、从学生原有认知结构提出问题

1。计算(—2)+(—2)+(—2)。

2。有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

3。有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)[

4。根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

二、师生共同研究有理数乘法法则

问题1水库的水位每小时上升3厘米,2小时上升了多少厘米?

解:3×2=6(厘米)①

答:上升了6厘米。

问题2水库的水位平均每小时下降3厘米,2小时上升多少厘米?

解:—3×2=—6(厘米)②

答:上升—6厘米(即下降6厘米)。

引导学生比较①,②得出:

把一个因数换成它的相反数,所得的积是原来的积的相反数。

这是一条很重要的结论,应用此结论,3×(—2)=?(—3)×(—2)=?(学生答)

把3×(—2)和①式对比,这里把一个因数“2”换成了它的相反数“—2”,所得的积应是原来的积“6”的相反数“—6”,即3×(—2)=—6。

把(—3)×(—2)和②式对比,这里把一个因数“2”换成了它的相反数“—2”,所得的积应是原来的积“—6”的相反数“6”,即(—3)×(—2)=6。

此外,(—3)×0=0。

综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同0相乘,都得0。

继而教师强调指出:

“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”。

用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了。

因此,在进行有理数乘法时,需要时时强调:先定符号后定值。

三、运用举例,变式练习

例某一物体温度每小时上升a度,现在温度是0度。

(1)t小时后温度是多少?

(2)当a,t分别是下列各数时的结果:

①a=3,t=2;②a=—3,t=2;

②a=3,t=—2;④a=—3,t=—2;

教师引导学生检验一下(2)中各结果是否合乎实际。

课堂练习

1。口答:

(1)6×(—9);(2)(—6)×(—9);(3)(—6)×9;

(4)(—6)×1;(5)(—6)×(—1);(6)6×(—1);

(7)(—6)×0;(8)0×(—6);

2。口答:

(1)1×(—5);(2)(—1)×(—5);(3)+(—5);

(4)—(—5);(5)1×a;(6)(—1)×a。

这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以—1都等于它的相反数。+(—5)可以看成是1×(—5),—(—5)可以看成是(—1)×(—5)。同时教师强调指出,a可以是正数,也可以是负数或0;—a未必是负数,也可以是正数或0。

3。填空:

(1)1×(—6)=______;(2)1+(—6)=_______;

(3)(—1)×6=________;(4)(—1)+6=______;

(5)(—1)×(—6)=______;(6)(—1)+(—6)=_____;

(9)|—7|×|—3|=_______;(10)(—7)×(—3)=______。

4。判断下列方程的解是正数还是负数或0:

(1)4x=—16;(2)—3x=18;(3)—9x=—36;(4)—5x=0。

四、小结

今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”。

五、作业

1。计算:

(1)(—16)×15;(2)(—9)×(—14);(3)(—36)×(—1);

(4)100×(—0。001);(5)—4。8×(—1。25);(6)—4。5×(—0。32)。

2。填空(用“>”或“

Ⅲ 初一数学《从算式到方程》教案范文大全

方程的学习是初中数学中极其重要的基础知识,它的应用十分广泛,也是今后学习相关学科,如物理、化学等知识的重要工具,因此,使学生学会利用方程的模型去解决实际问题的 方法 十分重要。接下来是我为大家整理的初一数学《从算式到方程》教案 范文 大全,希望大家喜欢!

初一数学《从算式到方程》教案范文大全一

【教学习目标】

一、知识与技能

1、通过处理 实际问题,让学生体验从算术方法到代数方法是一种进步。

2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。

3、培养学生获取信息,分析问题,处理问题的能力。

二、过程与方法

通过实际问题,感受数学与生活的联系。

三、情感态度与价值观

培养学生热爱数学热爱生活的乐观人生态度。

【 教学方法 】

探索式教学法

教师准备教学用课件。

【教学过程】

一、新课引入

教师提出教科书第79页的问题,同时出现下图:

问题2:你会用算术方法求出王家庄到翠湖的距离吗?

问题3:能否用方程的知识来解决这个问题呢?

可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)

当学生列出不同算式时,应让他们说明每个式子的含义)

教师可以在学生回答的 基础上做回顾小结:

1、问题涉及的三个基本物理量及其关系;

2、从知的信息中可以求出汽车的速度;

3、从路程的角度可以列出不同的算式 :

如果设王家庄到翠湖的路程为x千米,那么王家庄距青山 千米,王家庄距秀水 千米.

问题1:题目中的“汽车匀速行驶”是什么意思?

问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?

问题3:根据车速相等,你能列出方程吗?

教师引导学生设未知数,并用含未知数的字母表示有关的数量

教师引导学生寻找相等关系,列出方程.

教师根据学生的回答情况进行分析,如:

依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

依据“王家庄至青山路段的车速=青山至秀水路段的车速”

可列方程:

给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

含有未知数的等式叫方程.

归纳列方程解决实际问题的两个步骤:

初一数学《从算式到方程》教案范文大全二

教学目标:

1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步.

2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念.

3.培养学生获取信息、分析问题、处理问题的能力.

教学重难点: 从实际问题中寻找相等关系.

教学过程:

一、情境引入

提出课本P78的问题,可用多媒体演示题目描述的行驶情境.

1.理解题意:客车比卡车早1小时经过B地,从这句话中可知客车、卡车行驶的路程和时间分别有什么关系?

2.能否列算式求出A、B两地之间的路程,要求能够解释列出的算式表示的实际意义.

3.提出问题,如果用字母x表示A、B两地的路程,根据题意会得到一个什么样的式子?

二、学习新知

1.引导学生把题中的数量用表格形式反映题意:

路程(km) 速度(km/h) 时间(h) 卡车 x 60 客车 x 70

2.学生回顾方程的概念,探讨、列出方程,并说出列得方程的依据.

3.讨论列出方程表示的意义,并对比算术方法,体会列方程解决问题与列算式解决问题的优越性.

4. 反思 :这个问题中除了A、B两地的路程是一个未知量,还有没有 其它 的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的方程呢?学生分组讨论.

5.将题中的已知量和未知量用表格列出:

路程(km) 速度(km/h) 时间(h) 卡车 60 y 客车 70 y-1

6.探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.

7. 总结 以上列出两个含不同未知数x、y的方程的方法:①以路程为未知数,则根据两车行驶时间的关系列方程.②以行驶时间为未知数,则从两车行驶路程的关系列方程.

8.比较列算式和列方程两种方法的特点:阅读课本P79.

9.举一反三:分别列算式和设未知数列方程解决下列问题:

(1)某数与它的的和是8,求这个数;

(2)班上有女生32人,比男生多,求男生人数;

(3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?

三、初步应用

1.例1:课本P79例1.

例2(补充):根据下列条件,列出关于x的方程:

(1)x与18的和等于54;

(2)27与x的差的一半等于x的4倍.

列出方程后教师说明:“4x”表示4与x的积,当乘数中有字母时,通常省略乘号“×”,并把数字乘数写在字母乘数的前面.

2.练习(补充)

(1)列式表示:

① 比a小9的数; ② x的2倍与3的和;

③ 5与y的差的一半; ④ a与b的7倍的和.

(2)根据下列条件,列出关于x的方程:

①12与x的差等于x的2倍;

②x的三分之一与5的和等于6.

四、课时小结

1.本节课我们学了什么知识?

2.你有什么收获?

五、课堂作业

小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入.

第2课时一元一次方程

教学目标:

1.理解一元一次方程、方程的解等概念.

2.掌握检验某个值是不是方程的解的方法.

3.培养学生根据问题寻找相等关系、根据相等关系列出方程的能力.

4.体验用估算方法寻求方程的解的过程,培养学生求实的态度.

教学重点:寻找相等关系,列出方程.

教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.

教学过程:

一、情境引入

问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?

如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?(25-x,2x-8)

由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8,这样就得到了一个方程.

二、自主尝试

1.尝试:让学生尝试解答课本P79的例1.

2.交流:

在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.

3.教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.

4.讨论:

问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?

问题2:在第(3)题中,你还能设其它的未知数为x吗?

5.建立概念

(1)概念的建立:

在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.

“一元”:一个未知数;“一次”:未知数的指数是一次.

判断下列方程是不是一元一次方程:

①23-x=-7;②2a-b=3;

初一数学《从算式到方程》教案范文大全三

教学目标 1.了解方程、一元一次方程、方程的解、解方程等概念;

2.掌握等式的性质,能对等式进行变形。

3.利用等式的性质解简单的一元一次方程。

教学重难点 重点:1.一方一次方程。2.利用方程解的定义求待定字母的值。3.等式的性质。

难点:1.利用等式的性质解简单的一元一次方程。2.列方程。 课后记 教学完成情况 □正常完成 □提前完成 □未完成 学生接受程度 □完全接受 □部分接受 □完全不能接受 学生课堂表现 □很积极 □比较积极 □一般 上次作业完成 □完成 □未完成 (完成质量: 分/5分制) 上次笔记整理 □完成 □未完成 (完成质量: 分/5分制) 教学反思 教案设计

(内容包含知识点、典型例题、课堂练习、课后作业和设计意图) 一、方程的有关概念

1.方程

含有未知数的等式叫做方程。例如 等。

理解要注意以下2点

方程必是等式,并且必须含有未知数。方程是表示已知数与未知数以及它们的相等关系式的等式,所含未知数不一定是一个,如 中, , 都是未知数。

与代数式的区别和联系:代数式不是方程(代数式中不含等于号),方程左右两边都是代数式。

2.方程的解

使方程中等号左右两边相等的未知数的值,叫做方程的解。

方程中若只含一个未知数,此时方程的解也叫方程的根。例如方程 左边= ,所以 是方程 的解,或说 是方程的根。

3.解方程

求出使方程中等号左、右两边相等的未知数的值叫做解方程。

解方程与方程的解的却别:

(1)解方程是确定方程的解的过程,是同解变形过程,在这里,解是动词。

(2)方程的解是求得的结果,它是未知数的数值,它能使方程中等号左、右两边的值相等,它是由未知数和已知数之间的相等关系确定的,方程的解中的解是名词。

例1:请指出下列哪些式子是方程

练习:1.下列各式中, 是等式; 是方程

例2:检验下列各题括号里的未知数的值,判断它们是不是前面方程的解。

(1)

(2)

(3)

练习:2. 是下列哪个方程的解( )

A. B. C. D.

3.一元一次方程 的解是( )

A. B. C. D.

二、一元一次方程

只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

最简形式 ,标准形式

例如 等都是一元一次方程。

要判断一个方程是不是一元一次方程,需要满足三个条件①只含有一个未知数;②未知数的次数是1;③整式方程。三点缺一不可。

例3:下列方程是一元一次方程的是( )

A. B. C. D.

例4:若 是关于 的一元一次方程,则 的值是( )

A.1 B.任意数 C.2 D.1或2

练习:4.若关于 的方程 是一元一次方程,求 的值

三、等式的性质

1.等式的性质1

等式两边加(或减)同一个数(或式子),结果仍相等。即如果 .

2.等式的性质2

等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。即如果 ,那么 ;如果 .

例5:用适当的数或式子填空,使所得的结果仍是等式,并指出是根据等式的哪一条性质以及怎样变形的。


初一数学《从算式到方程》教案范文大全相关 文章 :

1. 初中七年级上册数学《从算式到方程》教案五篇

2. 初一数学从算式到方程教学视频

3. 初一数学《正数和负数》教案大全

4. 初一语文《黄河颂》教案范文大全

5. 初一语文《河中石兽》教案大全范文

6. 初一数学从算式到方程习题及答案

7. 初一上册数学从算式到方程试题(2)

8. 初一上册数学从算式到方程试题

9. 2017年七年级上数学教学计划范文

10. 七年级班级工作计划指导思想

Ⅳ 五年级上册数学练习17最后一题怎么讲

人教版五年级数学上册《列方程解决问题练习课》教学设计(练习十七)课题: 第五单元: 练习十七(1) 教学内容:教材P80~81练习十七第2、3、6、7题。教学目标:巩固学生对列方程解决稍复杂的问题的学习。教学重点:正确分析题目中的数量关系并列出方程。教学难点:找等量关系,掌握列方程的方法。教学方法:引导回顾,分析解答。小组合作探究。教学准备:多媒体。教学过程一、复习回顾教师:昨天,我们学习了有关方程的哪些知识?学生:列方程解决稍复杂的问题。出示下列问题,只列方程。1.图书室文艺书比科技书多180本,文艺书的本数是科技书的3倍。文艺书和科技书各有多少本?2.养鸡厂养母鸡和公鸡共400只,母鸡的只数是公鸡的7倍。母鸡和公鸡各有多少只?3.钢笔每支18.5元,甜甜买钢笔和铅笔各2支,共用了38.8元。铅笔每支多少钱?学生先独立思考,指名学生口答。二、指导练习1.教材第80页练习十七第2题。(1)出示第80页练习十七第2题。(2)教师指名学生说题意,并对学生做环保教育。提问:已知什么,要求什么?学生汇报。(3)教师:该如何列方程解决呢?让学生独立解决,教师巡视,并强调解题的规范性。(4)教师点评两种不同的列方程的方法,并订正。2.教材第80页练习十七第3题。(1)出示教材第80页练习十七第3题。(2)组织学生阅读题目,获取题目中的有用信息。(3)教师:怎样列方程解决这个问题呢?组织学生独立思考后,在小组中交流解决问题的思路。(4)学生汇报:解:设102室本次的水表读数是x 。①(x -3102)×2.5= 135 x =3156答:102室本次的水表读数是3156。2.5x -3102×2.5=135 x =3156答:102室本次的水表读数是3156。三、巩固拓展1.通过抓不变量解决差倍问题出示:红红今年11岁,爸爸今年39岁,红红几岁时,爸爸的年龄是红红的3倍?
学生阅读题目,理解题目意思。思路导引设红红的年龄为x 岁,则爸爸的年龄就是3x 岁,根据年龄差不变,列方程解答。学生小组交流,尝试解答,集体汇报。教师根据学生汇报板书:解:设红红x 岁时,爸爸的年龄是3x 岁。3x -x =39-112x =28x =14答:红红14岁时,爸爸的年龄是红红的3倍。教师小结:在解决年龄问题时,关键是要找出题目中不变的量(即年龄差)。即时练习:李老师今年42岁,轩轩今年9岁,当轩轩几岁时,李老师的年龄是轩轩的4倍?2.通过抓信题目中的隐含条件解决鸡兔同笼问题。出示:鸡兔共有8个头,26只脚,求鸡和兔各有几只。学生阅读题目,理解题目意思。思路导引⑴分析题目中的隐含条件:一只鸡有2只脚 ,一只兔有4只脚。⑵根据等量关系:兔的脚数+鸡的脚数=总脚数,可列出方程:4x +2(8-x )=26学生小组交流,尝试解答,集体汇报。教师根据学生汇报板书解:设兔有x 只,那么鸡有(8-x )只4x +2(8-x )=264x +16-2x =262x +16=262x =102x ÷2=10÷2x =5 8-x =8-5=3答:鸡有3只,兔有5只。四、课后小结。通过这节课,你有什么新的收获?作业:教材第80~81页练习十七第6、7题。板书设计练习十七不变的量:年龄差 一只鸡有2只脚 ,一只兔有4只脚。3x -x =39-11 兔的脚数+鸡的脚数=总脚数4x +2(8-x )=26 实际问题与方程(学案)班级________ 小组名 _______ 姓名________ 小组评价_______ 教师评价_______学习目标1、通过自主探索,交流互助学会形如x+ax=c方程的解法,根据两个未知量之间的关系,列方程解答含有两个未知数的实际问题。2、学会用检验答案是否符合已知条件的方法,提高求解验证的能力。
3、培养分析,观察能力和表达能力,体验数学的应用价值和数学学习的乐趣。学习重、难点正确设未知数,找出等量关系列方程解决问题。使用说明及学法指导1、结合问题自学课本78-79页的内容,画出疑惑点;独立思考完成自主学习和合作探究任务,并总结规律方法。2、先重点理解两个未知数之间的等量关系,再根据等量关系列方程。一、自主学习1、4x+5=54 3×2.1+2x=13.4 0.3x÷2=9 4(x+8)=202、学校科技小组的男生是女生人数的4倍,设女生有x人,男生有( )人,男女生共( )人。3、学校图书组有女生x人,男生为女生的2.5倍,男生有( )人,男女同学共( )人。4、果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?5、自学第78例4(1)题中有几个未知量?(2)设谁为x?(3)问题中包含怎样的等量关系?根据相等关系列出方程并解答。二、合作探究1、阅读教材79页例5,你从图中知道哪些信息?2、题中相等的数量关系是什么?3、如何表示经历的时间呢?4、怎样设未知数,列方程?注意:解决问题时,要注意题中数量单位,不统一的,要先统一单位。三、过关检测1、解方程5x+x=30 x+4x=25 8x-x=49 7x-x=362、甲乙两堆货物共重60吨,乙的重量甲的3倍,甲乙两堆货物各种多少吨?四、整理学案

5.9
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
人教版五年级数学上册《列方程解决问题练习课》(练习十七)教学设计教案
人教版五年级数学上册《列方程解决问题练习课》
教学设计(练习十七)
课题: 第五单元: 练习十七(1)
教学内容:教材P80~81练习十七第2、3、6、7题。
教学目标:
巩固学生对列方程解决稍复杂的问题的学习。
教学重点:正确分析题目中的数量关系并列出方程。
第 1 页
教学难点:找等量关系,掌握列方程的方法。
教学方法:引导回顾,分析解答。小组合作探究。

Ⅳ 七年级数学《从算式到方程》教案设计

方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础。接下来是我为大家整理的 七年级数学 《从算式到方程》教案设计,希望大家喜欢!

七年级数学《从算式到方程》教案设计一

一、教材分析

1.教学目标、重点、难点.

教学目标:

(1)了解方程的解的概念.

(2)体验对方程解的估算,会检验一个数是不是某个一元方程的解.

(3)渗透对应思想.

重点:方程解的意义,会检验一个 数是不是一个一元方程的解.

难点:方程解的意义,会检验一个数是不是一个一元方程的解.

2.例、习题的意图

本节课重点是了解方程的解的意义. 通过实际问题中对所列方程解的估算,了解什么是方程的解以及由于估算遇到了困难,产生寻求方程解法的需求,为后面的学习做好铺垫.

例1是通过实际问题列出方程,根据(1)题未知数 的取值范围以及方程解的概念逐一代入方程来寻求方程的解,使学生亲身体验什么是方程的解,也为例2检验一个数值是不是方程的解做好铺垫. 对第(2)、(3)题再采用(1)题 方法 寻求方程的解已不容易,这又为后边学习解方程奠定了积极的心理储备.

例2是根据方程的解的意义,使学生会检验一个数值是不是方程的解,这一点应切实使学生掌握.

3.认知难点与突破方法

难点是方程解的意义和检验一个数是不 是一个一元方程的解. 例1起着承上 启下的作用,在估算方程解的过程中,理解方程解的意义,学会检验一个数是不是一个一元方程的解.抓住关键字“等号左右两边相等”,检验一个数是不是一个一元方程的解,要分别计算方程的左右两边,若其值相等,则这个未知数是方程的解,若不相等,则不是方程的解.

二、新课引入

复习:

1.什么是一元一次方程?

2.练习:当 , , 时,求式子 的值.

答案: , , .

通过练习2强调求式子的值的一般步骤,其中易错易混的地方,如代入的值是负数,应加上括号,数与数相乘时应恢复乘号,运算关系不能混淆等.

三、例题讲解

例1 教材P69 中 例1

分析:三个题目中的相等关系分别是:

(1)计算机已使用的时 间+继续使用的时间=规定的检修时间.

(2)2(长+宽)=周长.

(3)女生人数—男生人数= .

问题:列方程是解决问题的重要方法,利用所列的方程我们可以得出未知数的值,你能估算方程 中的 的值吗?

分析:方程中等号左边有未知数 ,估算的 值代入方程应使等号左边 的值等于等号右边的值2450,这样的 值才适合方程. 由于 表示月份,是正整数,不妨让 , ,……分别代入 方程算一算.

由计算结果可以看到,每一个 的允许值都使代数式 有一个确定的数值, 为方便起见,可以列一个表格:

1 2 3 4 5 6 7 … 1850 2000 2150 2300 2450 2600 2750 … 从表中发现:当 时, 的值是 ,也就是,当 时 ,方程中等号的左边: . 等号的右边:2450. 由此得到方程的左边=右边,就说 叫做方程 的解,也就是方程 中,未知数 的值为5. 所以,方程的解就是 .

教材P71中的小云朵,可以多选几个情 况来说明,以加强对方程解得意义的 理解.

从表中你还能发现哪个方程的解?(引导学生得出)如方程 的解是 ;方程 的解是 等等,使学生进一步体会方程解的概念.

方程解的意义:使方程中等号左右两边相等的未知数的值,叫做方程的解.

教材P71的思考:你能估算方程 和方程 的解吗?通过估算这两个方程的解,你有什么想法?

由于这两个方程估算其解有一定的困难,数不整齐,或方程比较复杂,出现矛盾冲突,引导学生得出:学习解方程的方法十分必要.

怎样检验一个数是否是方程的解呢?

七年级数学《从算式到方程》教案设计二

目标 1.使学生初步掌握一元一次方程应用题的设未知数和列方程; 2.培养学生观察能力,提高他们分析问题和解决问题的能力; 3.使学生初步养成正确思考问题的良好习惯. 教

重难点

重点:从学生原有的认知结构提出问题在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

难点:师生共同分析、研究利用等式的性质解一元一次方程和根据实际问题设未知数和列方程。 基本教法 探究式教学法、合作交流法、讲授法、提问法。

教具学具准备

无 教学流程 一、导入新课 1、小明的年龄是12岁,王老师的年龄是小明年龄的4倍少2,王老师的年龄是____岁?如果设小明的年龄是x岁,那么王老师的年龄是_____岁? 2、一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少两梨,请问同学知道否,几个老头几个梨? 二、讲授新课 1、什么叫做等式?

答:表示相等关系的式子叫做等式。

形式:把相等的两个数(或字母表示的数)用等号连接起来。 2、等式有何性质?

等式的性质1:等式两边加上(或减去)同一个数(或式子),结果仍相等。

如果a=b,那么a±c=b±c。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果a=b,那么ac=bc;

如果a=b(c≠0),那么

3、什么叫做方程?

答:含有未知数的等式叫做方程。

例:4x=24

150x+1700=2450

0.52x-(1-0.52)x=80

4、什么叫做一元一次方程?

七年级数学《从算式到方程》教案设计三

【教学目标】:

知识与技能:

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;

2、了解什么是方程,什么是一元一次方程及什么是方程的解。

过程与方法:

1、会将实际问题抽象为数学问题,通过列方程解决问题;

2、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法。

3、能结合具体例子认识一元一次方程的含义,体会设未知数列方程的过程,会用方程表示简单实际问题的相等关系。

情感与态度:

体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。

【教材分析】:

1、地位与作用:本节的内容是七年级数学上册第三章《一元一次方程》的第一节《从算式到方程》第一、二课时,首先通过一个具体的问题情境引入,使学生感受到用算术方法解决问题存在一定困难,从而积极探求新方法,体会数学的价值。然后,通过列代数式,找相等关系引出方程、一元一次方程等概念。本节内容是小学与初中知识的衔接点,通过方程的学习对于提高学生观察问题、研究问题、解决问题的能力,都是十分有利的。

2、教学重点: 建立一元一次方程的概念。

3、教学难点: 根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义。

【教学过程】:

问题与情境 教师活动 学生活动 一、创设情境,展示问题:

问题1: 章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远?

地名

时间

王家庄

10:00

青山

13:00

秀水

15:00

教师展示问题,要求用算术解法,让学生充分发表意见。

说明问题1中算术解法不容易,得出进一步学习的必要性。 学生独立思考,小组交流,代表发言,解释说明。

问题1的算术解法:(50+70)÷2=60(千米/时)

605-70=230(千米)

二、寻找关系,列出方程

1、对于问题1,如果设王家庄到翠湖的路程是x千米,则:

路程

时间

速度

王家庄-青山

王家庄-秀水

根据汽车匀速前进,可知各路段汽车速度相等,列方程。

2、比一比:列算式与列方程有什么不同?哪一个更简便?

3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。

找出相等关系,列出方程。

学生思考回答:

1、王家庄-青山(X—50)千米,王家庄-秀水(X+70)千米。 2、汽车以每小时(X-50)÷3千米的速度从王家庄到青山;以每小时(X+70)÷5千米的速度从王家庄到秀水。 三、定义方程,建立模型

1、定义:(板书)含有未知数的等式叫做方程。

练习一:判断下列式子是不是方程,是的打“√”,不是的打“x ”.

(1)1+2=3 ( ) (4) ( )

(2) 1+2x=4( ) (5) x+y=2 ( )

(3) x+1-3 ( ) (6) x2-1=0 ( )

练习二:根据下列问题,设未知数并列出方程。

(1) 小颖种了一株树苗,开始时树苗高为40厘米,栽种后树苗每周长高约15厘米,大约几周后树苗长高到1米。

解:如果设x周后树苗长高到1米,那么依题意得到方程:_________.

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的修检时间2450小时?

解:经过x月这台计算机的使用时间达到规定的修检时间2450小时,那么依题意得到方程:_________.

(3)用一根长24cm的铁丝围成一个长方形,使它长是宽的1.5倍,长方形的长、宽各应是多少?

解:如果设这个长方形的宽为X米,那么长为_______米.由此依题意得到方程:________________。

(4)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?

解:设这个学校的学生为x,那么女生数为 ,男生数为 .

由此依题意得到方程:________________。

[议一议]:上面的四个方程有什么共同点?

2、定义:只含有一个未知数(元X),未知数的指数是1次,这样的方程叫做一元一次方程。

练习三:判断下列方程哪些是一元一次方程?

(1) (2)

(3) (4)

(5)

3、方程的解:做一做 填下表:

七年级数学《从算式到方程》教案设计四

教学目标

1.知识与技能

(1)通过观察,归纳一元一次方程的概念.

(2)根据方程解的概念,会估算出简单的一元一次方程的解.

2.过程与方法.

通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.

3.情感态度与价值观

鼓励学生进行观察思考,发展合作交流的意识和能力.

重、难点与关键

1.重点:了解一元一次方程的有关概念,会根据已知条件,设未知数,列出简单的一元一次方程,并会估计方程的解.

2.难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解.

3.关键:找出能表示实际问题的相等关系.

教具准备:投影仪.

教学过程

一、复习提问

在小学里,我们已学习了像2x=50,3x+1=4等简单方程,那么什么叫方程呢?什么叫方程的解和解方程呢?

答:含有未知数的等式叫方程;能使方程等号两边相等的未知数的值叫方程的解,求方程解的过程叫解方程.

方程是应用广泛的数学工具,把问题中未知数与已知数的联系用等式形式表示出来.在研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数.

怎样根据问题中的数量关系列出方程?怎样解方程?这是本章研究的问题.

通过本章中丰富多彩的问题,你将进一步感受到方程的作用,并学习利用一地一次方 程解决问题的方法.

二、新授

1.怎样列方程?

让学生观察章前图表,根据图表中给出的信息,回答以下问题.

(1)根据图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间表,你知道,汽车从王家庄行驶到青山用了多少时间?青山到秀水呢?

(2)青山与翠湖、秀水到翠湖的距离分别是多少?

(3)本问题要求什么?

(4)你会用算术方法解决这个实际问题呢?不妨试试列算式.

(5)如果设王家庄到翠湖的路程为x(千米),你能列出方程吗?

解:(1)汽车从王 家庄行驶到青山用了3小时,青山到秀水用了2小时.

(2)青山与翠湖的距离为50 千米,秀水与翠湖的距离为70千米.

(3)王家庄到翠湖的距离是多少千米?

(4)分析:要求王家庄到翠湖的距离,只要求出王家庄到青山的距离,而王家庄到青山的时间为3小时,所以必需求汽车的速度.

如何求汽车的速度呢?

这里青山到秀水的时间为2小时,路程为(50+70)千米,因此可求的汽车的平均速度为(50+70)÷2=60(千米/时)

王家庄到青山的路程为:60×3=180(千米)

所以王家庄到翠湖的路程为:180+50=230(千米)

列综合算式为: ×3+50

(5)分析:先画出示意图,示意图往往有助于分析问题.

从上图中可以用含x的式子表示关于路程的数量:

王家庄距青山(x-50)千米,王家庄距秀水(x+70)千米.

从章前图表中可以得出关于时间的数量:

从王家庄到青山行车3小时,从王家庄到秀水行车5小时.

由路程数量和行车时间的数量,可以得到行车速度的表达式.

汽车从王家庄开往青山时的速度为 千米/时,汽车从王家庄开往秀水的速度为 千米/时.

要列出方程,必需找出“相等关系”,题目中还有哪些相等关系吗?

根据汽车是匀速行驶的,可知各段路程的车速相等.

于是列出方程:

=

以后我们将学习如何解这个方程,求出未知数x的值,从而得出王家庄到翠湖的路程.

思考:对于以上的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

根据汽车匀速行驶,可知各段路程的车速相等.

所以还可以列方程:

= 或 =

(前者是汽车从王家庄到青山与从青山到秀水,这两段路程的车速相等,后者是汽车从王家庄到翠湖与从青山到秀水,这两段路程的车速相等)

比较用算术方法和列方程方法解应用题,用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,有了这个未知数,问题中的已知量与未知量之间的关系就很容易用含有这个未知数的式子表示,再根据“相等关系”列出方程.

有了方程后人们解决许多问题就更方便了,通过今后的学习,你会逐步认识:从算式到方程是数学的进步.

列方程时,要先设字母表示未知数,通常用x、y、z等字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式即方程.

例1:根据下列问题,设未知数并列出方程.

(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?

分析:设正方形的边长为x(cm),那么周长为4x(cm),依题意,得4x=24.


七年级数学《从算式到方程》教案设计相关 文章 :

1. 初中七年级上册数学《从算式到方程》教案五篇

2. 初一数学从算式到方程教学视频

3. 初中七年级上册数学《解一元一次方程》教案优质范文五篇

4. 新人教版七年级数学下册教案全册

5. 七年级数学平行线的判定教案

6. 新人教版七年级数学下册导学案

7. 数学《一元一次方程》教学设计

8. 初中七年级上册数学《整式》教案优质范文五篇

9. 2020初一数学教学安排优质范文5篇

10. 七年级数学《正数和负数》教案设计范文

Ⅵ 《解比例》六年级数学教案

作为一名优秀的教育工作者,很有必要精心设计一份教案,教案是教学活动的总的组织纲领和行动方案。写教案需要注意哪些格式呢?以下是我整理的《解比例》六年级数学教案,欢迎大家分享。

《解比例》六年级数学教案1

教学内容: 教材第32页例2、例3,练一练和试一试练习六第6-11题,练习六后的思考题。

教学要求:

1、使学生认识解比例的意义,学会应用比例的基本性质解比例。

2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

教学过程:

一、复习引新

1、做第32页复习题。

让学生先思考可以怎样想。根据思考的方法在括号里填上数。

2、根据比例的基本性质把下面的比改写成积相等的式子。(日答)

4:3=2:1.5X:4=1:2

3、引入新课

在上面两题里,第1题是求比例里的未知项。从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例里另外一个未知数,这种求比例里的未知项,就叫做解比例。

现在,我们就应用比例的基本性质来解比例。

二、教学新课。

1、教学例2

提问:你能用比例的基本性质来解比例,求出未知项X吗?自己先想一想,有没有办法做,再试着做做看。

指名一人板演,其余学生做在练习本上。

2、教学例3

出示例题,让学生用比例形式读一读。

让学生解答在自己的练习本上。

指名口答解比例过程,老师板书。

3、教学试一试

出示例3,提问已知数都是怎样的数。

让学生自己解答。

4、小结方法。

三、巩固练习。

1、做练一练

指名四人板演。

2、做练习六第8题。

让学生做在课本上,指名口答。

3、做练习六第10题。

学生做在练习本上。

4、做练习六第11题。

学生口答,老师板书,看能写出多少个比例。

四、讲解思考题。

提问:根据题意,两个外项正好互为倒数,你想到什么?

两个外项的积已知是1,你能求另一个内项吗?

五、课堂小结

这堂课学习的什么内容?应用比例的基本性质怎样解比例?

六、课堂作业。

练习六第6题(1)-(4)题,第7题。

家庭作业:练习六第6题(5)、(6)题,第9题和思考题。

《解比例》六年级数学教案2

【教学内容】

解比例。(教材第42页例2、例3及练习八的习题)。

【教学目标】

1、使学生学会解比例的方法,进一步理解并掌握比例的基本性质。

2、培养学生运用已学的知识解决问题的能力,在计算过程中使学生养成验算的良好习惯。

3、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

【重点难点】

1、使学生掌握解比例的方法,学会解比例。

2、引导学生根据比例的基本性质,将带未知数的比例改写成方程。

【教学准备】

多媒体课件。

【情景导入】

上节课我们学习了比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

学生在小组中议一议,再汇报。

师:这节课,我们还要继续学习有关比例的知识,就是解比例。

板书课题:解比例。

【新课讲授】

1、教师用多媒体课件出示教材第42页第1、2行的内容。引导学生思考:什么叫做解比例?

学生独立思考后,在小组中交流并说出:求比例中的未知项叫做解比例。

师:想一想,怎样才能解出比例中的未知项呢?学生很容易想到比例的基本性质。

2、教学例2。

教师用多媒体课件出示例2。

指名读题,根据题意,描述两个相等的比。

=110或模型高度:实际高度=1∶10。

让学生列出比例,指出这个比例的外项、内项,并说明知道哪三项,求哪一项?

教师板书∶320=1∶10,你能试着计算出来吗?

请一名学生板演,其余的学生在练习本上做。

做完后,师问:怎样把比例式转化为方程式?学生回答:根据比例的基本性质转化。师接着板书:10x=320×1。

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以把方程解出来。注意:解方程要写“解”,那么解比例也要写“解”。

师:怎样解这个方程?

生:根据乘法各部分间的关系,把x看做一个因数,根据一个因数=积÷另一个因数,可以求出x。

小结:从刚才的解比例过程中可以看出,解比例可以根据比例的.基本性质把比例转化为方程,然后用解方程的方法来求未知项x。

3、教学例3。

解比例:

过程要求:学生独立练习,求出未知项。

同学之间互相交流,发现问题,及时解决。请一位学生上台板演。

解:2、4x=1、5×6

x=

x=3、75

提问:还可以用其他的知识解比例吗?

学生交流后,可能会说出:根据比例的意义,等号左边的比值是,要使等号右边的比值也是,x应等于。

4、总结解比例的方法。

教师:刚才我们学习了解比例,大家回忆一下解比例首先要做什么?转化成方程后再怎么做?

学生回忆解比例的过程。

教师:从上面的过程可以看出,在解比例的过程中哪一步是新知识?

学生:根据比例的基本性质把比例转化成方程。

【课堂作业】

1、完成教材第42页“做一做”第1题。

学生独立练习,教师指名板演,集体订正。

2、完成教材第43~44页第6、7、8、9、10、11、12、13题。

答案:1、x=7、5x=x=0、6

2、第6题:判断小红说得是否正确,可以有不同的方法。方法一:计算1分钟(60秒)心跳的次数,看是不是72次,因为45秒跳54次,1分钟也是60秒就要跳54÷45×60=72次,由此判断小红说得对。方法二:运用比例的知识。计算54∶45与72∶60的比值,看是否相同,相同说明小红说得对。因为这两个比的比值相同都是1、2,说明心跳速度没变。

第7题:组织学生独立练习。指名板演,集体订正。

第8题:组织学生在小组中议一议,说一说解题思路,再动手算一算。学生汇报。

第9题:组织学生阅读题目,理解题意,并独立练习。

第10题:组织学生小组合作完成,指名汇报。

第11题:组织学生在小组中议一议,怎样列比例式,共同完成后相互交流。

第12题:组织学生根据比例的基本性质改写等式,在小组中交流订正。

第13题:组织学生在小组中讨论,交流,相互验证。此题答案不唯一。

【课堂小结】

通过这节课的学习,你在哪些方面得到了提高?

【课后作业】

完成练习册中本课时的练习。

《解比例》六年级数学教案3

教学内容: P35~37解比例

教学目的: 1、使同学学会解比例的方法,进一步理解和掌握比例的基本性质。

2、通过合作交流、尝试练习,提高同学运用比例的基本性质解比例的能力。

3、培养同学的知识迁移的能力,增强同学的合作意识。

教学重点: 使同学掌握解比例的方法,学会解比例。

教学难点: 引导同学根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

教学过程:

一、回顾旧知,复习铺垫

1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

2、判断下面每组中的两个比是否能组成比例?为什么?

6:3和8:4:和:

3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)

二、引导探索,学习新知

1、什么叫解比例?

我们知道比例共有四项,假如知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

2、教学例2。

(1)把未知项设为X。解:设这座模型的高是X米。

(2)根据比例的意义列出比例:X:320=1:10

(3)让同学指出这个比例的外项、内项,并说明知道哪三项,求哪一项。

根据比例的基本性质可以把它变成什么形式?3x=815。

这变成了什么?(方程。)

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。

(4)同学说,教师板书解比例的过程。

教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

3、教学例3。

出示例3:解比例=

提问:“这个比例与例2有什么不同?”(这个比例是分数形式。)

这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

同学回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.56

让同学在课本上填出求解过程。解答后,让他们说一说是怎样解的。

4、总结解比例的过程。

刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

5、P35“做一做”。同学独立解答,订正时,让同学说说是怎么做的。

三、巩固深化,拓展思维

P37第7题。

四、全课小结,提高认识

什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?

五、课堂练习,辅助消化

P37~38第8~11题。

六、课外补充,拓展延伸

1、P38第12、13题。

2、4:8=12:24,假如将第二项减少1,要使比例成立,则第四项减少多少?

3、把两个比值都是的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。

4、一个比例的四个项都是大于0的整数,它的两个比的比值都是,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。

阅读全文

与数学4x是什么教学目标相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1371
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1351
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:834
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1453
数学中的棱的意思是什么 浏览:1017