⑴ 数学分析主要讲什么内容
数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。
后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。
数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本形态,从而形成微分学和积分学的基本内容。微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法。围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容。
积分学则从总体上研究微小变化(尤其是非均匀变化)积累的总效果,其基本概念是原函数(反导数)和定积分,求积分的过程就是积分法。
⑵ 数学分析怎么学
如何学好数学1
数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
如何学好数学2
高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。
有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。
至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。
l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。
3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。
4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。
答一送一:
如何在学习上占第一
学习上占第一,每个同学都可以做到。之所以你占不了第一,主要有两个原因:第一、生活方式、学习方法不正确,第二、没有坚强的毅力。在这里面毅力是第一重要的,学习方法是第二重要的。在现实生活中,全中国仍有70%以上的占第一的学生虽然占了第一,但他们并不是毅力最强的,或者说学习方法生活方式不是最好的。他们也许今天是第一,明天就不是了。也就是说,你如果按占第一的方法去学习、去锻炼,一般都会超过现有的第一。
辉煌的第一是不是要经过艰苦的努力才能得到呢?说它艰苦是因为“培养坚强的毅力”是世上最艰苦的工作,只有你具有了坚强的毅力才可能成为第一,当然正确的生活方式和学习方法也是特别重要的。在这里什么是坚强的毅力呢,只要你能按下面几点要求去做,而且每天都做记录,持之以恒,每天都不间断地坚持一个学期、一年、三年,那么你的毅力就足以达到占第一的要求了。在这项锻炼中就怕你中间有间断,风雨、心情、疾病、家务等等都不是你中断锻炼的理由。你要记住,学好学业是你学生生活中最重要的,没有什么工作的重要性会超过它。除了坚强的毅力,正确的学习方法和生活方式也是很重要的。
第一人人可以占,原来占第一的同学也不一定就比你更聪明多少,脑细胞也不一定比你多。爱迪生不是说过“天才是百分之九十九的汗水加上百分之一的灵感”吗?!所以你第一要过心理关,就是说:要坚信你一定能成功,一定会超过现有的第一,包括现在是第一的你自已。
第二、你要天天锻炼。没有一个健康的身体,你什么事也做不好,即使偶尔做好了,也不能长久。每天30分钟左右的锻炼一定要天天坚持。锻炼的形式多种多样,跑步、打乒乓球、打篮球、俯卧撑、立定跳远等等都可以。有些同学好面子,见到别人不跑步,怕自已跑别人看见了不好意思,那就错了,真正不好意思的是辛苦了几年考不上大学,是上了几年大学还要下岗。如果将来自已养活不了自已,那才是真正不好意思的。
第三、学习态度要端正。每次上课前,一定要把老师准备讲的内容预习好,把不好理解的、不会的内容做好标记,在老师讲到该处时认真听讲。如果老师讲了以后还不会,一定要再问老师,直到明白为止。当一个问题问了两遍三遍还不会时,一般的同学就不好意思问了,千万别这样,老师们最喜欢“不问明白誓不罢休”的性格了。上课时要认真听讲,认真思考,做好笔记。做笔记时一定要清楚,因为笔记的价值比课本还,将来的复习主要靠它。
课下首先要做的不是做作业,而是把笔记、课本上的知识点先学好,该记的内容一定把它背熟。这样会大大提高你做作业的速度,即平常说的“磨刀不误砍柴功”。做作业时应该独立思考,实在不能解决的问题,再和同学、老师商量。问同学时,不要问这道题结果是什么,而是要问“这道题究竟怎么做?”“这道题为什么这样做?”
第四、正确面对错误和失败。当有的知识你没有在课上学会、当你的练习做错时或者在考试中成绩太差时,你既不要报怨,也不要气馁,你应该正视这自已不愿得到的现实。没有学会不要紧,把该知识写到你的《备忘录》中,然后问同学问老师,再把正确的解释或结果,写到其它页上。错了题也是这样,考试失利不就是错的题多点吗,正确的方法是把原题抄到《备忘录》中,把正确的做法学会后,把做法和结果写到其它页上,如果能注上做该类题的注意事项,就会把你的学习效率又提高30%-60%。之所以把答案或解释写到其它页上,就是为了下次看知识点或错误的题目时,再动动脑筋,想想该知识点的理解和解释情况,再练练该题的做法和答案。错误和失败并不可怕,只要你能正视它,一切都会成为你成功的动力。
第五、记帐。你的学习一定要有一本帐,你什么时候做得好,记下来,什么时候错了题,记下来(注:帐本上只记“今天错题为《备忘录》××页×题)。课下几点几分学了英语,记录好;几点几分至几点几分学了物理记下来。把你生活中锻炼、学习的分分秒秒记录在你的帐本上,把你每次作业和考试中的正确题数、错误题数和错误题号(《备忘录》上的页号题号)一一记录在你的帐本上。把你每天学会的知识点都记录在帐本上,以备明天、后天再检查一下自已是否真正掌握了这些知识点。在帐本上过去了几天的知识点,你一定要学会并能熟练掌握。
帐本记录的是你学习、锻炼中每一个细节。这样记下来,在校生活中,每天约有一页32开纸的记录量,不在校时可能有两页32纸的记录量。在星期和假期里千万不能间断。把你的帐一天天积累起来,这就是你所走过的第一之路。
虽说在素质教育的今天学校不排名次,但学习出类拔萃是我们努力的目标,是我们考上高一级学校的必要条件,也是我们走向社会后,做好每一件工作的资本。同学们,去争取第一吧。如果你一年年按上面的要求做,你一定能占第一。
如果大家都这样去做,即使你占不了第一,一定是中国出类拔萃的学生,因为中国大多数的同学没有这样的毅力,没有这样好的学习方法和生活方式。同学们,为美好的明天奋斗吧!
===============================================
首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必 的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以 略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。
有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。
知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习,定理公式学习以及解题学习三个方面。学习数学概念,要善于抓住它的本质属性,也就是区别于这个概念和其他概念的属性;学习定理公式,要紧紧抓住定理方向的内在联系,抓住定理公式适用的范围及题型,做到得心应手地应用这些定理公式,数学解题实№上是在熟练掌握概念与定理公式的基础上解决矛盾,完成从“未知”向“已知”的转化。要着重学习各种转化方式,培养转化的能力。总而言之,在学习数学基础知识中,要注意把握知识的整体精髓, 悟其中的规律和实质,形成一个紧密联系的整体认识体系,以促进各种形式间的相互迁移和转化。同时,还要注意知识形成过程无处不隐含着人们在教学活动中解决问题的途径、手段和策略,无处不以数学思想、方法为指南,而这也是我们学习知识时最希望要学到的东西。
数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。
在数学学习中,要特别重视运用数学知识解决实№问题能力的培养。数学社会化的趋势,使得“大众数学”的口号席卷整个世界,有人认为未来的工作岗位是为已作好数学准备的人才提供的,这里所说的“已作好了数学准备”并不仅指懂得了数学理论,更重要的是学会了数学思想,学会了将数学知识灵活运用于解决现实问题中。培养数学应用能力,首先要养成将实№问题数学化的习惯;其次,要掌握将实№问题数学化的一般方法,即建立数学模型的方法,同时,还要加强数学与其他学科的联系,除与传统学科如物理、化学联系外,可适当了解数学在经济学、管理学、工业等方面的应用。
如果我们在数学学习中,既扎扎实实地学好了数学知识和技能,又牢固地掌握了数学思想和方法,而且能灵活应用数学知识和技能解决实№问题,那么,我们就走在了一条数学学习成功的大道上。
⑶ 数学实验报告怎么写啊 求好心人帮助
写实验报告是整理和表达思想的一个机会。
可以根据教师指定的问题一一回
答,也可以围绕实验内容
,
自己确定一个题目,选择一系列感兴趣的问题层层深
入地进行讨论。
实验报告的行文力求既简洁又具有可读性,
教师依据学生对问题
研究的深度给出成绩。
报告的主体大致包括五个方面
(
不一定非得如此
)
:
1
.实验题目
2
.实验目的:简要描述所要研究的问题,它背景和意义,本实验要达到的
目的。
3
.实验内容和方法:说明你是怎样安排你的实验
,
并解释这样做的理由。
4.
实验结果和分析:
保留那些能充分说明问题的数据,
必要的地方加上表
格或图示,对数据进行分析、讨论
,
说明发现了怎样的规律等。
5
.数学分析
如有可能,应当用分析或理论的方法支持你的实验结果。
⑷ 三年级试卷数学分析怎么写
一、试卷评价
从整体上看,本次试题难度适中,内容紧扣教材,符合学生的认知水平。试题注重基础知识的考查,题目紧密联系生活实际,注重趣味性、实践性和创新性。突出了数学学科的特点,以能力立意命题,体现了《数学课程标准》的精神。主要表现在以下几方面:
1 、强化知识体系,突出主要内容。本次试卷以基础知识为主,既注重全面又注重突出重点,对重点知识内容的考查占有了较高的比例,并保持了一定的深度。
2 、贴近生活实际,体现应用价值。“人人学有价值的数学”是新课标的一个重要理念。本次试题依据新课标的要求,从学生熟悉的生活出发,把枯燥的知识生活化、情景化,通过填空、解决问题等形式让学生从中体验、感受学习数学知识的必要性、实用性和应用价值。如:填空题的第 2 、 5 、 10 、 13 题,第五题问题解决。这些问题的设计均取材于学生熟悉的生活事件,体现了数学生活化的理念。
3 、重视各种能力的考查。本次试题通过不同的数学知识载体,全面考察了学生的计算能力、观察能力和判断能力以及综合运用知识解决问题的能力。
二、存在问题
1 、试卷中存在的问题
在三年级上学期,教材中只安排了“多位数乘一位数”的知识,而本次检测试卷中已出现了多位数乘两位数的试题。如第一题的第 4 题脱式计算的“ 100 × 10 - 100 ” ,第二题填空题的第 4 题 41 × 60 ○ 240 。 另外,在三年级上学期这个学段中,教材中的“有余数的除法”,商只要求学会是一位数的,但在试卷中也出现了商是两位数的除法。如第一题计算的第 1 题的“ 600 ÷ 7= ”。在二年级时学生学会了用乘法口诀求商,而商是两位数的除法还没有学习,在这次的检测试卷中出现了这样两道直接写得数的题(商是两位数的): 270 ÷ 3= , 100 - 60 ÷ 5= 。(说明:这几道题超出教材范围,在阅卷时我们没有批阅。)
2 、答卷中存在的问题
第一题计算题共 36 分,占卷面总分的 36% 。有四种呈现形式,分别是直接写得数、估算、笔算和脱式计算。这一大题,学生的计算能力比较扎实,得分率较高。存在不足:( 1 )看错数字或运算符号。如:把“ 43 + 5 ”看成“ 43 ÷ 5 ”,“ 80 ÷ 9 ”看成“ 80 × 9 ”。( 2 )在脱式计算这一题中,部分同学运算顺序掌握得不好,丢分较多。
第二题填空题共 21 分,占卷面总分的 21% 。这一题存在的问题是:( 1 )学生没有注意等式前后的单位名称,致使得数算错。如: 700 米 + 1300 米 = ( )千米,将得数填为“ 2000 ”;( 2 )没有认真读题。如:“一头牛的体重是 498 千克 , 4 头这样的牛大约是( )千克,合( )吨”,不进行估算,将得数填为“ 1992 ”。( 3 )概念模糊不清,不会正确计算经过时间。如第 5 题和第 13 题。
第三题判断题共 5 分,占卷面总分的 5% 。这一题存在的问题是 30% 左右的学生在“ 12 时整,时针和分针没有重合”这一题上还没有很好地在自己的脑海里建模钟面模型。
第四题选择题共 8 分,占卷面总分的 8% 。这一题存在的问题是概念模糊。如第 8 题“一根绳子长 24 分米,用它围成一个正方形,围成正方形的周长是( )分米。 A 、 24 ; B 、 12 ; C 、 6 。”对“绳子的长”和“正方形周长和正方形的边长”不理解,多数学生选 C 。
第五题问题解决,共 30 分,占卷面总分的 30% 。这一题存在的主要问题是:( 1 )不理解题意,算式列错。( 2 )不认真读题,结果错误。( 3 )不认真计算,算式列对,计算结果又错了。
三、取得的成绩
我们三年级 9 个教学班,参加检测人数共 522 人。平均分 83.8 分,及格率 94.8 ,最高分 100 分,最低分 15 分,优秀率 37.4% ,良好率 51.0% ,合格率 6.5% ,不合格率 5.2% 。
从试卷各种不同题型的抽样统计分析发现,学生基本知识掌握较为牢固。学生书写大部分较为整洁,格式相对规范,反映出教师对学生书写习惯培养的重视,学生学得相对较活,解决问题的能力有很大的提高。但从答卷中也可以看出,学生在做题细心方面,仍有欠缺,需要继续加强。
四、建议或批评
在今后的教学中,要从以下几方面去改进:
1 、学生的口算能力有待于加强,提高计算的准确度;
2 、在教学中,要有意识地训练、提高学生的思维能力和运用数学知识解决问题的能力;
3 、根据学生的不同特点,因材施教,从而提高学生的整体素质。
5 、加强学生的学习习惯和主动学习能力的培养,加强数学知识与现实生活的联系,注重知识形成过程与能力发展的培养。
6 、继续弘扬中华民族的传统文化,养成写好中国字的习惯。
7 、 教师要研读课标,熟悉教材,把握年段学习目标。同理,命题人也应研读课标,熟悉教材,把握年段学习目标。
⑸ 数学分析的内容简介
《数学分析》是针对有初等微积分基础的大学一年级和二年级的学生编写的,既可以作为教科书使用,也可以作为研究生入学考试和高等数学竞赛的培训教材。除此之外,此书对广大数学爱好者来说,也是一本实用性很强的参考书。全书共六章,主要内容包括实数理论、数列与无穷级数、连续性、黎曼与斯蒂尔切斯积分、一致连续性和广义积分。书中每一章均配有大量的例题和有一定难度的习题。目前市面上有各种版本的数学分析教材,且数学分析的内容基本成型,因而编写一本具有特色的教材并非易事。首先遇到的问题是材料的取舍和内容的编排。《数学分析》的读者具备初等微积分的基础,使得编书时合理选材更加重要。我们从实数理论入手,选取重要的且能培养和提高读者逻辑推理能力的结构和定理作为《数学分析》的重要内容。例如数列与级数,一致收敛性和广义积分等,尽量做到所选内容是数学分析的核心问题,避免出现后继课程将要讨论的课题。与一般数学分析教材不同的是,《数学分析》可作为研究生入学考试的辅导教材和大学生高等数学竞赛的培训教材,对一般数学分析教材中的内容作了推广和加深,并精选了部分富有启发性的例题和有一定难度的习题供读者练习。独立完成部分或全部习题,是读者检验自己推理能力和提高学习效率的重要途径,通过练习,可以加深对教材主要内容的理解和掌握。
⑹ 数学与应用数学幂函数论文开题报告怎么写
1
北方民族大学毕业论文(设计)
开 题 报 告 书
题目
姓 名
学 号 专 业 数学与应用数学 指导教师
北方民族大学教务处制
2
北方民族大学毕业论文(设计)
开 题 报 告 书
2014年 3月 12 日
姓 名
院(部) 数信学院
课题性质
学 号 专 业
数学与应用数学
课题来源 老师提供
题 目
探索“积分学”所蕴含的数学美
一、 选题的目的、意义(含国内外相同领域、同类课题的研究现状分析):
(一)、选题的目的
(二)、选题的意义
3
二、本题的基本内容:
课题任务、重点研究内容、实现途径、方法及进度计划
4
三、推荐使用的主要参考文献:
四、 指导教师意见:
签章:
年 月 日
五、院(部)审查意见:
签章:
年 月 日
还有
毕业论文(设计)开题报告
姓名
性别
学号
学院
专业
年级
论文题目
函数极值的探究与应用
□教师推荐题目
□自拟题目
题目来源
题目类别
指导教师
选题的目的、意义
(
理论意义、现实意义
):
选题目的:为进一步研究有关函数极值在不同的情况下的求值问题,特别是当函数是一元、二元
或者多元时的极值求解。
为学习函数极值问题提供一个比较全面的介绍,
从而给学者在函数极值的求解
提供充足的知识。
理论意义:整合函数极值的有关求解问题,有助于函数极值的更进一步研究。
现实意义:为初学函数极值问题提供有关的资料,也为考研及掌握函数极值提供较全面的知识准
备。
选题的研究现状(理论渊源及演化、国外相关研究综述、国内相关研究综述)
:
函数极值是有关函数的一个重要的研究课题,它对于掌握函数有着重要的作用。目前在有关的研
究中都有关于函数极值的讨论,
并在不少的学报及学术性论文中都有关于函数极值问题的有关见解,
同
时这些学者都研究的比较透彻、全面。
论文
(
设计
)
主要内容(提纲)
:
本文重点介绍了有关函数极值的求解问题及其运用。
比较系统的介绍当函数是一元、
二元及多元时函数极值的不同求解方法,
及有关函数极值的定理
及证明。
在介绍各元函数求解方法时给出了相应的函数极值求解的例题,有助于理解求函数极值的有关定
理,并对函数极值求解的掌握。
拟研究的主要问题、重点和难点
:
研究的主要问题:不同元函数的极值求解的相关定理及其证明。
重难点是这些定理的证明及应用问题。
研究目标:
给出有关不同元函数的极值的求解定理。
研究方法、技术路线、实验方案、可行性分析:
研究方法:分析和综合以及理论联系实际的方法;
技术路线:理论研究;
实验方案:参照书本的相关知识,及相关文章;
可行性分析:综合各种函数极值的求解问题,从而得出自己的研究。
研究的特色与创新之处:
综合不同元的函数,给出不同元的函数极值的相关定理与证明,总结出比较系统的有关函数极值
的求解问题。
进度安排及预期结果:
第七学期第十五周之前:开题报告;
2010
年寒假期间:搜集、整理资料,构思、细化研究路线;
第八学期第一至六周:撰写论文,完成“研究路线”中的前四个阶段;
第八学期第七、八周:撰写论文,给出简化阶梯形矩阵在向量空间中的若干重要应用;
第八学期第九周:按照琼州学院教务处制定的《毕业论文撰写规范》排印论文;
第八学期第十周:做好答辩前的准备工作。
参考文献:
[1]
华东师范大学数学系编
.
数学分析(第三版)
(上)
[M].
北京
:
高等教育出版社
.
[2]
方保镕等
.
矩阵论
[M].
北京:清华大学出版社
.2004(11).
[3]
吉艳霞
.
求函数极值问题的方法探究
[J].
运城学院学报
.2006,
[4]
李关民,王娜
.
函数极值高阶导数判别法的简单证明
[J].
沈阳工程学报
.2009.
[5]
李文宇
.
求多元函数极值的一种新方法
[J].
鸡西大学学报
.2006.
指导教师意见:
指导教师签名:
年
月
日
答辩小组意见:
组长签名:
年
月
日
备注:
1
、题目来源栏应填:教师科研、社会实践、实验教学、教育教学等;
2
、题目类
别栏应填:应用研究、理论研究、艺术设计、程序软件开发等。
⑺ 数学系开题报告
数学系开题报告范文
开题报告是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家整理的数学系开题报告范文,欢迎阅读。
课题名称: 实积分与复积分的比较研究
一、课题的来源及意义
通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。
积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的意义。
二、国内外发展状况及研究背景
国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的`完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。
三、课题研究的目标和内容
通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。
(1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。
(2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。
(3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。
四、本课题研究的方法
课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。
五、课题的进度安排:
第一阶段:搜集资料,确定选题范围,联系指导老师(20XX秋1--7周)
第二阶段:选定题目、填写开题报告,准备开题 (20XX秋8--12周)
第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20XX秋13周--20XX春6周)
第四阶段:撰写初稿、在指导老师的指导下修改论文 (20XX春7--14周)
第五阶段:提交论文,准备答辩,论文总结 (20XX春15--16周)
六、参考文献
[1] 钟玉泉. 复变函数论[M]. 第3版.北京:高等教育出版社,2004
[2] 华东师范大学数学系. 数学分析[M].第3版.高等教育出版社,2001
[3] 四川大学数学系. 高等数学(第4册)[M].北京:高等教育出版社,2002
[4] 严子谦, 等. 数学分析(第一册)[M].北京:高等教育出版社,2004
[5] 孙清华, 赵德修. 新编复变函数题解[M]. 武汉:华中科技大学出版社,2002
[6] 王仲建. 实积分与复积分的联系与区别[N]. 陕西教育学院学报,1995,25:73-79
[7] 完巧玲. 利用复积分计算实积分[N]. 菏泽学院学报,2010,32(2):1673—2103
[8] 李敏,王昭海. 巧用复变函数积分证明实积分[J]. 数学教学与研究考试周刊,2009,41
[9] 金云娟. 解析函数唯一性定理在复积分上的应用[N]. 丽水学院学报,2009,31(5)
[10] 崔冬玲. 复积分的计算方法[J]. 淮南师范学院学报,2006,3:6-9
;⑻ 数学试卷分析怎么写
数学试卷分析如下写作:
一、命题情况分析
本次命题从教材出发,体现新课标理念,全面的考察了学生对教材的掌握、应用情况。整张试卷难易适度,覆盖面广、形式灵活多样,既有深度又有一定的广度;既关注了学生的学习结果,又关注了平时的训练与应用,学习过程中的变化和发展。
准确把握了本册教材的知识点,而且有一定的灵活性、开放性,体现新课标对学生知识、技能及生活中应用的监测目标。
二、考生答题情况分析;
1、计算题。口算9个小题、笔算6个小题、改错3小题。出错的原因主要有:
(1)由于马虎数字抄错,计算错误。
(2)忘记写得数,出现丢分。
2、填空题:本题面广量大,分数占全卷的1/5。本题主要考察学生运用书本知识解决日常生活中的问题的掌握情况。很多学生不能根据书本上知识灵活处理问题。错的较多的题是3、5、7、8小题。
3、选择题:共12分。其中4、5题考察了学生对所学知识的综合运用能力,出现失分。也有一部分同学对概念性的知识掌握的不太明白,还需教师的讲解。
4、图形部分(16分):错误主要集中在第3小题,应根据长和宽计算出周长,再计算出正方形的边长,最后画出正方形。题型新颖,学生无从下手。
5、解决问题:共6题,其中第2题错误率达60%以上。第4题出现错误主要是由于计算错误。
6、附加题。只有少数同学做出来。
三、原因分析
1、学生对知识的掌握有局限性,缺少拓展,不能活学活用。思维的局限性导致学生的判断出现失误。
2、注重课内向课外延伸的同时却忽略了常识性的东西。
3、学生中普遍存在的共性——审题不认真,爱凭感觉做。粗心大意、审题不清是学生中普遍存在的问题。它经常让学生与完美擦肩而过。计算马虎的现象也“随处可见”!
4、良好的学习习惯有待加强。
5、学生应用题分析能力差,稍复杂点的应用题就显得吃力无从下手。
四、改进措施
1、夯实基础。创新的同时不能忽略基础知识的教学。
2、加强师生互动、生生互动、人机互动,教师要善于观察、思考。适时转换和优化知识结构,把课堂还给学生。让学生参与教学,亲身体验探究的过程,激发学习热情。
3、力求让知识“活”起来。多开展活动,为学生搭建实战的舞台。培养学生解决实际问题的能力。
4、提高学生的分析、理解能力。从基础的题型入手,充分联系生活实际,培养学生的逻辑思维能力,提高数学素养。
5、不断提高自身素质。要有充足的知识、能力储备。
⑼ 3000字数学分析感想
函数是现代数学最重要的概念之一,函数描述的是变量之间的关系。微积分起源的学术争论从其诞生时刻就没有停止,有人认为是牛顿发明了微积分,有人则持否定观点。但可以肯定的是微机分已经渗透到现代科学的各个领域。微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。
一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。
不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。
其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。
应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。
直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。
任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西……
欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。
⑽ 数学分析试卷怎么写
数学试卷分析:1、基础知识掌握的不扎实,对基本方法、基本数学思想不能熟练、准确的掌握和应用。
2、审题不清,马虎失分现象较多。考虑不全面,缺乏分类思想,造成丢解漏解比较普遍。会而不对,对而不全。
3、学生计算能力较弱,因计算失分现象非常严重
4、绝大部分学生的表述能力较弱,推理能力差,导致因书写乱、不规范失分。几何证明题(24、25、26等)失分严重。
5、综合运用知识的能力较弱,对综合性较强的题目解答出现偏差较大。第28题没有得满分的。