A. 基本的几何图形有哪些
基本的几何图形有柱体、锥体、旋转体、截面体、圆形、多边形、弓形、多弧形。
1、柱体
一个多面体有两个面互相平行且大小相同,余下的每个相邻两个面的交线互相平行,这样的多面体就为柱;另外,柱体还可分为正柱体,斜柱体。
2、椎体
椎体是指包括圆锥、棱锥等在内的空间立体图形,由圆的或其它封闭平面基底以及由此基底边界上各点连向一公共顶点的线段所形成的面所限定。
3、旋转体
一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;该定直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体。
4、圆形
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。
5、多边形
数学用语,由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。
B. 什么叫几何图形点是平面图形吗
点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。几何图形一般分为立体图形和平面图形。
点是平面图形,是平面图形中最简单的基本图形。由四个或四个以上的平面围成的封闭几何体就是多面体。
平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平形四边形等都是基本的平面图形。
几何图形的应用非常广泛,无论在设计、绘画创作、数学研究中都需要借助几何图形进行。
数学定义、定理等用数学语言叙述起来很抽象,记住定理有一定难度,因此帮助学生记住定义定理是教学中一个重要环节。若在教学中恰当地借助几何图形,数形结合,使学生对直观图形加深理解以掌握其定理。
C. 几何图形是什么意思
几何图形,即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。生活中到处都有几何图形,我们所看见的一切都是由点、线、面等基本几何图形组成的。
立体几何图形
可以分为以下几类:
(1)柱体:包括圆柱和棱柱。棱柱又可分为直棱柱和斜棱柱,按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积都等于底面面积乘以高,即V=SH;
(2)锥体:包括圆锥体和棱锥体,棱锥分为三棱锥、四棱锥及N棱锥
(3)旋转体:包括圆柱、圆台、圆锥、球、球冠、弓环、圆环、堤环、扇环、枣核形等。
(4)截面体:包括棱台、圆台、斜截圆柱、斜截棱柱、斜截圆锥、球冠、球缺等。其表面积和体积一般都是根据图形加减解答。
平面几何图形
可分为以下几类:
(1)圆形:包括正圆,椭圆,多焦点圆——卵圆。
(2)多边形:三角形、四边形、五边形等。
(3)弓形:优弧弓、劣弧弓、抛物线弓等。
(4)弧形:月牙形、谷粒形、太极形、葫芦形等。
应用
几何图形的应用非常广泛,无论在设计、绘画创作、数学研究中都需要借助几何图形进行。
数学定义、定理等用数学语言叙述起来很抽象,记住定理有一定难度。若在教学中恰当地借助几何图形,数形结合,使学习者对直观图形加深理解以掌握其定理。
D. 什么是几何图形
几何体(geometricsolid)亦称立体,是立体几何的基本概念之一。
几何体概念产生于人们对客观世界中各种物体的数学抽象,当人们只考虑物体的形状、大小、位置关系等数学性质,而不考虑它的物理的、化学的、生物的、社会的等属性时,就获得几何体的概念,在几何学中,人们把若干几何面(平面或曲面)所围成的有限形体称为几何体。
围成几何体的面称为几何体的界面或表面,不同界面的交线称为几何体的棱线,不同棱线的交点称为几何体的顶点。
几何体也可看成空间中若干几何面分割出来的有限空间区域,立体几何首先研究的是一些较简单的几何体的几何性质,如多面体、旋转体以及它们的组合体等
E. 几何图形是什么
geometry
1.点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric figure)。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。 几何图形一般分为立体图形(solid figure)和平面图形(plane figure)。
2· 几何体的概念:几何体简称体,像正方体、球体、棱椎体等都是几何体。包围着体的是面,面有平面和曲面两种,面与面相交的地方形成线,线与线相交的地方叫做点。 3.用运动的观点来理解点,线,面,体。点动成线,线动成面,面动成体。
3、立体几何图形如何分类
可以分为以下几类: 第一类:柱体;包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积统一等于底面面积乘以高,即V=SH,第二类:锥体;包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;棱锥体积统一为V=SH/3,第三类:旋转体:包括:圆柱;圆台;圆锥;球;球冠;弓环;圆环;堤环;扇环;枣核形;等其表面积公式为:S=2*L*π*R(L是基图的周长,π是常数,R是重心到轴的距离)其体积公式为:V=2*S*π*R(S是基图的面积,π是常数,R是重心到轴的距离)第四类:截面体:包括:棱台;圆台;斜截圆柱;斜截棱柱;斜截圆锥;球冠;球缺等其表面积和体积一般都是根据图形加减解答。
4、平面几何图形如何分类
1.圆形(包括正圆,椭圆) 2.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六…… 注:正方形既是矩形也是菱形。 3.弓形(由直线和圆弧构成的图形,包括优弧弓,劣弧弓,抛物线弓等)。 4.多弧形(包括月牙形,谷粒形,太极形葫芦形等)
F. 小学数学有哪些几何图形
小学数学有:
1、平面图形:长方形、正方形、平行四边形、三角形、梯形、圆。
2、立体图形:长方体、正方体、圆柱体、圆锥体。
几何图形,即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。生活中到处都有几何图形,我们所看见的一切都是由点、线、面等基本几何图形组成的。几何源于西文西方的测地术,解决点线面体之间的关系。无穷尽的丰富变化使几何图案本身拥有无穷魅力。
(6)数学的几何图是什么扩展阅读:
平面几何图形可分为以下几类:
(1)圆形:包括正圆,椭圆,多焦点圆——卵圆。
(2)多边形:三角形、四边形、五边形等。
(3)弓形:优弧弓、劣弧弓、抛物线弓等。
(4)多弧形:月牙形、谷粒形、太极形、葫芦形等。
G. 几何图形都是什么图形
几何图形,即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。
生活中到处都有几何图形,看见的一切都是由点、线、面等基本几何图形组成的。几何源于西文西方的测地术,解决点线面体之间的关系。
几何图形分为立体图形和平面图形,各部分不在同一平面内的图形叫做立体图形;各部分都在同一平面内的图形叫做平面图形。
几何图形,即从实物中抽象出来的各种图形。生活中到处都有几何图形,我们所看见的一切都是由点、线、面等基本几何图形组成的,无论对象多么的复杂,都可以用点、线、面去化简和归纳,有效的规划错综复杂的世界。几何源于西方的测地术(土地的测量),用来解决点、线、面、体之间的关系。无穷尽的丰富变化使几何图案本身拥有无穷的魅力。
H. 什么叫几何图形
点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric figure) 几何图形一般分为立体图形(solid figure)和平面图形(plane figure)。
I. 几何图形指的是
下面说下我的理解.
我觉得几何图形指的是空间里面点的集合.空间楼主应该能理解吧,但是如何给空间下一个很容易懂有很严谨的定义,我不知道.总之可以感受到物体可能的存在位置都是空间里面的.点的概念楼主应该学过吧,可以说一个点就是空间里面某个具体位置.如果很多很多点在一起构成一个集体,那么这个集体就叫一个几何图形.它是一个抽象的概念(我看了下网络上面说几何图形的定义是“从实物中抽象出的各种图形统称为几何图形.”),仅仅指那些点的集体.
而楼主说的“物体是几何图形”就不对了,因为“物体”是个物理概念,我们不光讨论空间里的点,还讨论它的材质、重量、颜色等等等等,不是纯纯的数学抽象概念.当然你可以说“板凳占据的那一块空间里的范围是一个几何图形”,因为“范围”是个抽象概念,只需要空间里的点就可以描述清楚.
J. 几何图形指的是什么是封闭图形吗
一般性定义:
1、点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric figure).
2、从实物中抽象出的各种图形统称为几何图形.有些几何图形的各部分不在同一平面内,叫做立体图形(solid figure).有些几何图形的各部分都在同一平面内,叫做平面图形(Plane figure).
如定义,不一定是封闭的,比如线、面是无限延伸的.