① 初中数学中的关系分几种
变量关系、圆与圆的关系、函数关系、位置关系、圆与线的关系、平行线和相交线、坐标、不等式组、三角形、分式、二次根式、勾股定理、平行四边形、弧长、概率、统计、函数、三视图。嗯。我记得初中大概就是学了这些了。
② 数学内容之间的关系有什么
由点及面,环环相扣,层层叠加,既相互独立又相互联系。
③ 在数学中,什么是关系式
关系常指二元关系,数学的基本概念之一,关系是在集合的基础上定义的一个重要的概念,与集合的概念一样,关系的概念在计算机科学中也是最基本的。
它主要反映元素之间的联系和性质,在计算机科学中有重要的意义,如有限自动机和形式语言、编译程序设计、信息检索、数据结构以及算法分析和程序设计的描述中经常出现。
任何一个不是自反的关系,未必是反自反的;反之,任何一个不是反自反的关系,未必是自反的,这就是说,存在既不是自反的也不是反自反的二元关系。
(3)数学关系有哪些扩展阅读:
常用数学关系式
1、每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
2、1倍数×倍数=几倍数,几倍数÷1倍数=倍数,几倍数÷倍数=1倍数。
3、速度×时间=路程,路程÷速度=时间,路程÷时间=速度。
4、单价×数量=总价,总价÷单价=数量,总价÷数量=单价。
5、工作效率×工作时间=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率 。
6、加数+加数=和,和-一个加数=另一个加数。
7、被减数-减数=差,被减数-差=减数,差+减数=被减数。
④ 数学关系有哪些
应该是这个吧,错了请不要炒
1千米=1000米
1米=10分米
1分米=10厘米
(1米=100厘米)
1小时=60分钟
1分钟=60秒
1升=1000毫升
1元=10角
1角=10分
1平方千米=100公顷
1公顷=100平方米
1平方米=100平米分米
1平方分半=100平米厘米
⑤ 初一数学有哪些关系式
初一数学概念
实数:
—有理数与无理数统称为实数.
有理数:
整数和分数统称为有理数.
无理数:
无理数是指无限不循环小数.
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数.
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴.
相反数:
符号不同的两个数互为相反数.
倒数:
乘积是1的两个数互为倒数.
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值.一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0.
数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
⑵减法法则:减去一个数,等于加上这个数的相反数.
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线.
数学第一章相交线
一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角.邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角.
二、对顶角:是两条直线相交形成的.两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”.
对顶角的性质:对顶角相等.
三、垂直
1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直.其中一条叫做另一条的垂线,它们的交点叫做垂足.记做a⊥b
垂直是相交的一种特殊情形.
2、垂线的性质:
①过一点有且只有一条直线与已知直线垂直;
②连接直线外一点与直线上各点的所有线段中,垂线段最短.
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)
4、空间的垂直关系
四、平行线
1、 平行线:在同一平面内,不相交的两条直线叫做平行线.记做a‖b
2、 “三线八角”:两条直线被第三条直线所截形成的
① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧.
② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧.
③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁.
3、 平行公理:经过直线外一点,有且只有一条直线与这条直线平行
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
4、 平行线的判定方法
① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;
③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;
④ 平行于同一条直线的两条直线平行;
⑤ 垂直于同一条直线的两条直线平行.
5、 平行线的性质:
①两条平行线被第三条直线所截,同位角相等;
②两条平行线被第三条直线所截,内错角相等;
③两条平行线被第三条直线所截,同旁内角互补.
6、 两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.
7、 命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成.
五平移
1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.
说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键.③图形平移的方向,不一定是水平的
2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等
⑥ 数学六个关系式有哪些
数学六个关系式有:
1、一个加数=和—另一个加数
2、被减数=差+减数
3、减数=被减数—差
4、一个因数=积÷另一个因数
5、被除数=商×除数
6、除数=被除数÷商
运算性质
被除数扩大(缩小)n倍,除数不变,商也相应的扩大(缩小)n倍。
除数扩大(缩小)n倍,被除数不变,商相应的缩小(扩大)n倍。
除法的性质:被除数连续除以两个除数,等于除以这两个除数之积。有时可以根据除法的性质来进行简便运算。
例如:300÷25÷4=300÷(25×4)=300÷100=3。
⑦ 数学:什么是关系式
关系式是表示两种或多种物质之间“物质的量(单位:摩尔)”关系的一种简化的式子。
例如:
加减乘除法各部分之间的关系:
1、加数+加数=和。和-一个加数=另一个加数。
2、被减数-减数=差。被减数-差=减数。差+减数=被减数。
3、因数×因数=积。积÷一个因数=另一个因数。
4、被除数÷除数=商。被除数÷商=除数。商×除数=被除数。
加减乘除对应说明如下:
1、加法是基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。表达加法的符号为加号“+”。进行加法时以加号将各项连接起来。
2、减法是四则运算之一,从一个数中减去另一个数的运算叫做减法;已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。表示减法的符号是“-”,读作减号。
3、乘法,是指将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。
4、两个数相除又叫做两个数的比。若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c÷b,读作c除以b(或b除c)。其中,c叫做被除数,b叫做除数,运算的结果a叫做商。
⑧ 数学包含关系符号有哪些
包含用数学符号为:⊆
集合的符号还包括一下几种
∪(并集)、∩(交集)、∈(属于)
其他数学符号
运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
关系符号
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于)。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号,“|”表示“能整除”
⑨ 常见的数学数量关系式有哪些
工作时间*工作效率=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
本金*利率=利息
单价*数量=总价
工效*时间=工作总量
单产量*数量=总产量
每份数*份数=总数 速度=时间*路程
本金*利率*时间=利息
植树问题中的主要数量关系是:间隔数×每个间隔的米数=一共的米数;
锯木头问题的主要数量关系是:锯的次数×锯一次用的时间=一共要的时间;
爬楼梯问题中的数量关系式是:楼梯的级数÷每两层楼之间楼梯的级数=楼梯的段数。
敲钟问题的主要关系式是:等待的次数×等待一次用的时间=一共用的时间
成活率=成活棵数/总棵数
合格率=合格/总数
⑩ 数学研究的"关系"主要有哪些这些关系应满足哪些条件
一个等式有两个变量,如果一个变量在某个数集里取任意一个数,都能得到惟一的一个数,这个等式就是函数。前者是自变量,后者是因变量。