导航:首页 > 数字科学 > 数学家是怎么研究的

数学家是怎么研究的

发布时间:2023-01-22 12:55:40

① 数学家是怎么思考的

数学家在他们的创造性活动中是如何思维的,他们运用了哪些最基本的思维方法,这同样是数学教育必须关心的问题.学习数学,核心是学会像数学家那样进行思维,因此,需要理清数学思维有哪些基本方法,这些方法的要领是什么,如何掌握这些方法.
数学思维的一般方法有:观察与实验,比较、分类与系统化,分析与综合,归纳、类比与联想,化归等.所谓创造性思维也往往要归结为这些思维方法.

⑴ 观察与实验

“观察是人们对事物或问题的数学特征通过视觉获取信息,运用思维辨认其形式、结构和数量关系,从而发现某些规律或性质的方法.”⑨ 数学思维通常都要从观察数学对象开始,结合运用其它方法才能获得关于客观事物的本质和规律的认识,因此观察法是数学思维过程的必需的和第一位的方法.就数学的基础而言,公理的确立就是首先通过观察事物的运动变化,再通过抽象概括才得以形成的.
观察侧重于探索和发现,观察的结果一般需要经过验证才能确认其成立.浙江师范大学任樟辉在他的《数学思维论》中对观察法作了比较认真的分析.他认为:“由于观察是有目的、有选择的一种认识过程,观察者必须细致地对数学对象进行搜索和思考,并根据目的需要适当地变换角度以达到解决问题的目的.对于同一个问题,由于观察者的知识、经验和能力的不同,往往对问题的认识深度就会有很大的差别.在数学教学中,注意培养敏锐的观察力是提高数学思维水平的一个重要方面.要重视观察的知识准备,也要在解题时加强观察意识这一思维环节,使它与分析等其他思维方法相结合.明确观察的目的要求,善于变换不同角度去抓住问题的特征,形成数学直感或产生直觉以解决问题.”⑩ 因此,观察法既是数学家研究数学不可缺少的方法,也是学生学好数学所必须掌握的方法.
“实验是根据所研究问题的需要,按照研究对象的自然状态和客观规律,人为地设置条件使所希望的现象产生或对其进行控制的科学方法.”⑾ 由于实验(或试验)总是和观察相联系,观察常常可用实验作基础,而实验又可使观察得到的性质或规律得以重现或验证.因而它是数学思维的一种间接的但却是基本的方法.在数学中,实验法可用来发现或验证许多数学对象的性质.如几何中对各种图形面积、体积的计算或公式的导出,圆锥曲线光学性质的实验等,都是实验法在数学中的具体应用.
欧拉曾明确指出,数学这门科学,需要观察,还需要实验.波利亚也一再把数学的研究方法与其它自然科学的研究方法做比较,指出它们在收集材料、进行观察与实验方面是完全类似的.

② 数学是研究什么的

数学是是研究数量、结构、变化、空间以及信息等概念的一门学科。

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。

数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。

具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。

(2)数学家是怎么研究的扩展阅读:

数学重要分支有:

一、数论

数论是纯粹数学的分支之一,主要研究整数的性质。整数可以是方程式的解(丢番图方程)。有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)。

二、代数

代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。

三、几何

几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。几何思想是数学中最重要的一类思想。

参考资料来源:网络—数学

③ 你觉得数学家究竟都在研究什么呢

那么,数学家究竟都在研究什么呢?或者说数学是由哪些部分组成的?传统上,我们可以将数学分为两大类:研究数学本身的纯数学和应用于解决现实问题的应用数学。但是这种分类法并不十分清晰,许多领域起初是按照纯数学发展的,但后来却发现了意想不到的应用。许多领域之间也有着非常紧密的关系,因此,如果要精确地为数学分类的话,应该是一个复杂的网络。

而在本文中,我们将会带领读者简单地了解数学的五大部分:数学基础、代数学、分析学、几何学和应用数学。

1.数学基础
数学基础研究的是逻辑或集合论中的问题,它们是数学的语言。逻辑与集合论领域思考的是数学本身的执行框架。在某种程度上,它研究的是证明与数学现实的本质,与哲学接近。

数理逻辑和基础(Mathematical logic and foundations)
数理逻辑是这一部分的核心,但是对逻辑法则的良好理解产生于它们第一次被使用之后。除了在计算机科学、哲学和数学中正式地使用了基础的命题逻辑之外,这一领域还涵盖了普通逻辑和证明论,最终形成了模型论。在此,一些着名的结果包括哥德尔不完全性定理以及与递归论相关的丘奇论题。

2.代数学
代数是对计数、算术、代数运算和对称性的一些关键的概念进行提炼而发展的。通常来说,这些领域仅通过几个公理就可定义它们的研究对象,然后再考虑这些对象的示例、结构和应用。其他非常偏代数的领域包括代数拓扑、信息与通信,以及数值分析。

数论(Number theory)
数论是纯数学中最古老、也是最庞大的分支之一。显然,它关心的是与数字有关的问题,这通常是整数或有理数(分数)。除了涉及到全等性、可除性、素数等基本主题之外,数论现在还包括对环与数域的非常偏代数的研究;还有用于渐近估计和特殊函数的分析方法和几何主题;除此之外,它与密码学、数学逻辑甚至是实验科学之间都存在着重要的联系。

群论(Group theory)
群论研究的是那些定义了可逆结合的“乘积”运算的集合。这包括了其他数学对象的对称集合,使群论在所有其他数学中占有一席之地。有限群也许是最容易被理解的,但矩阵群和几何图形的对称性同样也是群的中心示例。

④ 数学家主要研究什么

数学家主要研究那些百年难题,及其解决方法,为化学、物理的科学研究提供基础。

⑤ 关于1+1 数学家们到底在研究些什么呢

史上和质数有关的数学猜想中,最着名的当然就是“哥德巴赫猜想”了。

1742年6月7日,德国数学家哥德巴赫在写给着名数学家欧拉的一封信中,提出了两个大胆的猜想:

一、任何不小于6的偶数,都是两个奇质数之和;
二、任何不小于9的奇数,都是三个奇质数之和。

这就是数学史上着名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。

同年6月30日,欧拉在给哥德巴赫的回信中, 明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。

我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。

1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。

20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。

1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之和。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。

1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。

1966年,我国着名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的和。”这个定理被世界数学界称为“陈氏定理”。

由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。

哥德巴赫是德国一位中学教师,也是一位着名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:
(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。
从此,这道着名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。
到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。
在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下:
1920年,挪威的布朗证明了‘“9 + 9”。
1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。
1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,苏联的布赫夕太勃证明了“5 + 5”。
1940年,苏联的布赫夕太勃证明了“4 + 4”。
1948年,匈牙利的瑞尼证明了“1 + c”,其中c是一很大的自然数。
1956年,中国的王元证明了“3 + 4”。
1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。
布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了。前一部分的叙述是很自然的想法。关键就是要证明'至少还有一对自然数未被筛去'。目前世界上谁都未能对这一部分加以证明。要能证明,这个猜想也就解决了。
然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和。故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的"类别组合"时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的"完全一致",2+1与2+2的"不完全一致"等情况的排列组合所形成的各有关联系,就可导出的"类别组合"为1+1,1+1与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式。因为其中的1+2与2+2,1+2 两种"类别组合"方式不含1+1。所以1+1没有覆盖所有可形成的"类别组合"方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证。然而事实却是:1+2 与2+2,以及1+2(或至少有一种)是陈氏定理中(任何一个充分大的偶数都可以表示为两个素数的和,或一个素数与两个素数乘积的和),所揭示的某些规律(如1+2的存在而同时有1+1缺失的情况)存在的基础根据。所以1+2与2+2,以及1+2(或至少有一种)"类别组合"方式是确定的,客观的,也即是不可排除的。所以1+1成立是不可能的。这就彻底论证了布朗筛法不能证"1+1"。
由于素数本身的分布呈现无序性的变化,素数对的变化同偶数值的增长二者之间不存在简单正比例关系,偶数值增大时素数对值忽高忽低。能通过数学关系式把素数对的变化同偶数的变化联系起来吗?不能!偶数值与其素数对值之间的关系没有数量规律可循。二百多年来,人们的努力证明了这一点,最后选择放弃,另找途径。于是出现了用别的方法来证明歌德巴赫猜想的人们,他们的努力,只使数学的某些领域得到进步,而对歌德巴赫猜想证明没有一点作用。
歌德巴赫猜想本质是一个偶数与其素数对关系,表达一个偶数与其素数对关系的数学表达式,是不存在的。它可以从实践上证实,但逻辑上无法解决个别偶数与全部偶数的矛盾。个别如何等于一般呢?个别和一般在质上同一,量上对立。矛盾永远存在。歌德巴赫猜想是永远无法从理论上,逻辑上证明的数学结论。

⑥ 华罗庚是如何研究数学题

华罗庚
(1910-1985),国际数学大师,中国科学院院士,是中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者,“中国解析数论学派”创始人。他为中国数学的发展作出了无与伦比的贡献。 被誉为“中国现代数学之父”,“被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。美国着名数学史家贝特曼着文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有着名科学院的院士”。
华罗庚先生早年的研究领域是解析数论,他在解析数论方面的成就尤其广为人知,国际间颇具盛名的“中国解析数论学派”即华罗庚开创的学派,该学派对于质数分布问题与哥德巴赫猜想做出了许多重大贡献。他在多复变函数论、矩阵几何学方面的卓越贡献,更是影响到了世界数学的发展。也有国际上有名的“典型群中国学派”,华罗庚先生在多复变函数论,典型群方面的研究领先西方数学界10多年,这些研究成果被着名的华裔数学家丘成桐高度称赞。华罗庚先生是难以比拟的天才。

学术影响:
开创“中国数学学派”,并带领达到世界一流水平。培养出众多优秀青年,如王元、陈景润、万哲先、陆启铿、龚升等等,不少已成为世界级的名家了。
建国六十年来,“感动中国一百人物之一”。
-----------------------------------------------------------------
谢谢采纳哦

⑦ 数学家是怎么研究数学的

联系实际。数学以前分几何,算数。相互验证的一些东西。数字公式公理可以用图形建模,一些有莫名规则的也可以用公式建模

阅读全文

与数学家是怎么研究的相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1401
沈阳初中的数学是什么版本的 浏览:1347
华为手机家人共享如何查看地理位置 浏览:1039
一氧化碳还原氧化铝化学方程式怎么配平 浏览:881
数学c什么意思是什么意思是什么 浏览:1405
中考初中地理如何补 浏览:1296
360浏览器历史在哪里下载迅雷下载 浏览:698
数学奥数卡怎么办 浏览:1384
如何回答地理是什么 浏览:1020
win7如何删除电脑文件浏览历史 浏览:1052
大学物理实验干什么用的到 浏览:1481
二年级上册数学框框怎么填 浏览:1696
西安瑞禧生物科技有限公司怎么样 浏览:962
武大的分析化学怎么样 浏览:1244
ige电化学发光偏高怎么办 浏览:1334
学而思初中英语和语文怎么样 浏览:1647
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1483
数学中的棱的意思是什么 浏览:1054