① 着名的数学着作有哪些
《周髀算经》是中国现存最早的数学典籍. 《九章算术》约成书于公元纪元前后,系统总结了我国从先秦到西汉中期的数学成就。 南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学着作问世。 贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。 秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法, 并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。 李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的着作,在数学史上具有里程碑意义。 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。 公元1303年,元代朱世杰(生卒年代不详)着《四元玉鉴》。 14世纪中、后叶明王朝建立后统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,自此中国古代数学便开始呈现全面衰退之势。 明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的着作。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇着作。邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》 〔10卷〕是介绍西方三角学的着作。 华罗庚是蜚声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守与多复便函数等多方面研究的创始人与开拓者。。他共发表学术论文约二百篇,专着有《堆垒素数论》、《高等数学引论》、《指数和的估计及其在数论中的应用》、《典型群》、《多复变数函数论中的典型域的分析》、《数论引导》、《数值积分及其应用》、《从单位圆谈起》、《优选法》、《二阶两个自变数两个未知函数的常系数偏微分方程》、《华罗庚论文选集》等12部。
② 数学专着
你要什么样的数学专着,可以在网上买啊。实体书店不一定有你要的
③ 数学古代的专着有什么
(1)两汉时期:《九章算术》约成书于东汉,分九章介绍了许多算术命题及其解法,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。
(2)南北朝时期:①魏晋时期的数学家刘徽,运用极限理论,提出了计算圆周率的正确方法。②南朝祖冲之精确地计算出圆周率是在3.1415926-3.1415927之间,这一成果比外国早近一千年。它的专着《缀术》对数学发展有杰出的贡献。
④ 有哪些数学着作
科普类:
1 拓扑学奇趣,[苏联]伏.巴尔佳斯基,伏.叶弗来莫维契编着,裘光明译
2 拓扑学的首要概念 作者:(美)陈锡驹(W.G.Chinn), (美)斯廷路德(N.E.Steenrod)着 一般附注:据1966年英文版译
3 Famous Problems of Elementary Geometry 作 者(德)克莱因(F. Kiein) , 译 者 沈一兵
4 奇妙而有趣的几何 作 者 韦尔斯
5 几何学的故事 作者:列昂纳多·姆洛迪诺夫
6 近代欧氏几何学 作者:(美)R·A·约翰逊着、单壿译
7 《古今数学思想》, (美)莫里斯·克莱因着,张理京等译 共4册
8 《数学,确定性的丧失》 作者:(美)克莱因 着,李宏魁 译
9 数学珍宝:历史文献精选 着 作 者: 李文林
10《几何学的新探索》 作者:(英)考克瑟特(Doxeter,H.S.M.), (美)格雷策(Greitzer,S.L.)着
11 几何的有名定理 作者:(日)矢野健太郎着
12 什么是数学 作者:(美)R·柯,H·罗宾 着,I·斯图尔特 修订,左平,张饴慈 译
13 《证明与反驳》 作者:伊姆雷.拉卡托斯
14 数学与猜想(共两卷) G.波利亚,
15 《数学的发现》 作者:(美)乔治·波利亚 着, 刘景麟 等译
16 《怎样解题》 作者:(美)G·波利亚|译者:涂泓//冯承天
17 数学——它的内容,方法和意义(共三卷) 原出版社 USSR Academy 作 者 [俄]A.D.亚历山大洛夫 译 者 孙小礼, 赵孟养 裘光明 严士健
18 圆锥曲线的几何性质----通俗数学名着译丛 作者:英国)a科克肖特
19 东西数学物语 作者:(日)平山谛 着,代钦 译 丛书名: 通俗数学名着译丛
20 来自圣经的证明(第3版)(英文版) 作者:(德)艾格尼,(德)齐格勒 着
21 计算出人意料(从开普勒到托姆的时间图景) 作者:伊法儿.埃克郎
22 爱丽丝漫游数学奇境 作者:(日)钓 浩康 着,吴方 译
23 费马大定理 又名: Fermat's Last Theorem 作者: (英)西蒙?辛格 译者: 薛密 副标题: 一个困惑了世间智者358年的谜
24 100个着名数学问题
25 数学中的智巧
26 可怕的科学《经典数学》系列 北京少年儿童出版社 尼克.阿诺德【英】等
传记类:
1 《数字情种》(爱多士传) 作者:保罗.霍夫曼
2 《我的大脑敞开了——天才数学家保罗·爱多士传奇》 作者布鲁斯.谢克特[美]
3 《女数学家传奇》 作者:徐品方
4 《一个数学家的辩白》 作者: 哈代 译者: 王希勇
5 《数学大师》 译者: 徐源 作者: (美)E·T·贝尔 副标题: 从芝诺到庞加莱
6 现代数学家传略辞典 作 者 张奠宙
7 世界着名数学家传记(上、下集) 作 者 吴文俊
8 数学精英
9 最后的炼金术士——牛顿传 作者 (英)怀特
专业:
1 《从微分观点看拓扑》J.W.米尔诺
2 无穷小分析引论 Introction to analysis of the infinite [作者]:欧拉
3 《自然哲学之数学原理》 作者:艾萨克.牛顿
4 几何原本(13卷视图全本) 作者:(古希腊)欧几里得原着, 燕晓东编译
5 《数论报告》希尔伯特
6 《算术研究》高斯
7 《代数几何原理》哈里斯(Harris)
8. 《微积分学教程》菲赫金哥尔兹
9. 《有限群表示》J.P.塞尔
10. 《曲线和曲面的微分几何》杜卡谟
11. 《曲面论》达布
12. 《数论导引》华罗庚
13. 《代数学基础》贾柯伯逊
14. 《交换代数》阿蒂亚
⑤ 数学名着有哪些
强烈推荐 R.科朗 着的 《what is mathematics》,即《什么是数学》
深度没您要求的深,但几乎涵盖了所有数学的重要思想
哈尔摩斯的《测度论》,阿诺尔德的《常微分方程》,阿尔弗斯的《复分析》……你要了解数论吗?你去看哈代的《数论导引》(最近才有的中译本。哈代是个大师,你知道吗?),要了解概率论,看费勒的《概率论及其应用》……(这些都有中译本,但你是否知道,英文原版的数学书是一片更广阔的天地?我可以告诉你,读数学书,还是英文的多。
⑥ 有哪些数学着作
《算数书》 《算经十书》 《九章算术》 《数书九章》 《测圆海镜》 《益古演段》 《详解九章算法》 《杨辉算法》 《算学启蒙》 《四元玉鉴》 《九章算法比类大全》 《算法统宗》 《数理精蕴》 《梅氏丛书辑要》 《视学》 《割圆密率捷法》 《畴人传》 《衡斋算学遗书合刻》 《李氏遗书》 《求表捷术》 《则古昔斋算学》 《莱因德纸草书》 《几何原本》 《已知条件》 《数沙者》 《论球和圆柱》 《抛物弓形求积》 《论劈锥曲面体与椭球体》 《圆锥曲线论》(阿波罗尼奥斯) 《度量论》 《算术入门》 《天文学大成》 《算术》 《数学汇编》 《阿耶波多历数书》 《婆罗摩历算书》 《代数学》(花拉子米) 《代数学》(奥马?海亚姆) 《天文系统极致》 《算盘书》 《论完全四边形》 《论各种三角形》 《算术、几何、比及比例全书》 《大术》 《数量概论》 《砺智石》 《代数学》(邦贝利) 《论十进》 《分析术人门》 《奇妙的对数表的描述》 《不可分量几何学》 《平面与立体轨迹引论》 《求极大值与极小值的方法》 《几何学》 《圆锥曲线论稿》 《圆锥曲线论》(帕斯卡) 《无穷算术》 《几何学讲义》 《运用无穷多项方程的分析学》 《流数法与无穷级数》 《自然哲学的数学原理》 《广义算术》 《一种求极大、极小值与切线的新方法》 《发微算法》 《机会论》 《猜度术》 《正的和反的增量方法》 《流数通论》 《寻求具有某种极大或极小性质的曲线的技巧》 《无穷分析引论》 《代数学人门》 《数学史》 《分析力学》 《解析函数论》 《几何学基础》 《画法几何学》 《天体力学》 《概率的分析理论》 《算术研究》 《纯粹分析的证明》 《分析教程》 《关于定积分理论的报告》 《热的分析理论》 《论图形的射影性质》 《高于四次的一般方程的代数求解之不可能性的证明》 《关于曲面的一般研究》 《数学分析在电磁理论中的应用》 《椭圆函数论新基础》 《代数通论》 《论方程的根式可解性条件》 《绝对空间的科学》 《几何图形相互依赖性的系统发展》 《具有完善的平行线理论的新几何学原理》 《线性扩张论》 《位置的几何学》 《形式逻辑》 《单复变函数的一般理论基础》 《关于用三角级数表示函数的可能性》 《关于几何基础的假设》 《四元数讲义》 《思维规律的研究》 《数论讲义》 《置换与代数方程》 《连续性与无理数》 《对于近代几何学研究的比较考察》 《概念语言》 《关于由微分方程确定的曲线》 《天体力学新方法》 《位置分析》 《函数论论文集》 《算术原理》 《连分式研究》
⑦ 伟大的数学着作有哪些
科普类数学名着: 1 拓扑学奇趣,[苏联]伏.巴尔佳斯基,伏.叶弗来莫维契编着,裘光明译
2 拓扑学的首要概念 作者:(美)陈锡驹(W.G.Chinn), (美)斯廷路德(N.E.Steenrod)着 一般附注:据1966年英文版译
3 Famous Problems of Elementary Geometry 作 者(德)克莱因(F. Kiein) , 译 者 沈一兵
4 奇妙而有趣的几何 作 者 韦尔斯
5 几何学的故事 作者:列昂纳多·姆洛迪诺夫
6 近代欧氏几何学 作者:(美)R·A·约翰逊着、单壿译
7 《古今数学思想》, (美)莫里斯·克莱因着,张理京等译 共4册
8 《数学,确定性的丧失》 作者:(美)克莱因 着,李宏魁 译
9 数学珍宝:历史文献精选 着 作 者: 李文林
10《几何学的新探索》 作者:(英)考克瑟特(Doxeter,H.S.M.), (美)格雷策(Greitzer,S.L.)着
11 几何的有名定理 作者:(日)矢野健太郎着
12 什么是数学 作者:(美)R·柯,H·罗宾 着,I·斯图尔特 修订,左平,张饴慈 译
13 《证明与反驳》 作者:伊姆雷.拉卡托斯
14 数学与猜想(共两卷) G.波利亚,
15 《数学的发现》 作者:(美)乔治·波利亚 着, 刘景麟 等译
16 《怎样解题》 作者:(美)G·波利亚|译者:涂泓//冯承天
17 数学——它的内容,方法和意义(共三卷) 原出版社 USSR Academy 作 者 [俄]A.D.亚历山大洛夫 译 者 孙小礼, 赵孟养 裘光明 严士健
18 圆锥曲线的几何性质----通俗数学名着译丛 作者:英国)a科克肖特
19 东西数学物语 作者:(日)平山谛 着,代钦 译 丛书名: 通俗数学名着译丛
20 来自圣经的证明(第3版)(英文版) 作者:(德)艾格尼,(德)齐格勒 着
21 计算出人意料(从开普勒到托姆的时间图景) 作者:伊法儿.埃克郎
22 爱丽丝漫游数学奇境 作者:(日)钓 浩康 着,吴方 译
23 费马大定理 又名: Fermat's Last Theorem 作者: (英)西蒙�9�9辛格 译者: 薛密 副标题: 一个困惑了世间智者358年的谜
24 100个着名数学问题
25 数学中的智巧传记类数学名着 1《数字情种》(爱多士传) 作者:保罗.霍夫曼 2 《我的大脑敞开了——天才数学家保罗·爱多士传奇》 作者布鲁斯.谢克特[美]
3 《女数学家传奇》 作者:徐品方
4《一个数学家的辩白》 作者: 哈代 译者: 王希勇
5《数学大师》 译者: 徐源 作者: (美)E·T·贝尔 副标题: 从芝诺到庞加莱
6 现代数学家传略辞典 作 者 张奠宙
7 世界着名数学家传记(上、下集) 作 者 吴文俊
8 数学精英
9 最后的炼金术士——牛顿传 作者 (英)怀特专业数学名着 1 《从微分观点看拓扑》J.W.米尔诺2 无穷小分析引论 Introction to analysis of the infinite [作者]:欧拉
3 《自然哲学之数学原理》 作者:伊萨克.牛顿
4 几何原本(13卷视图全本) 作者:(古希腊)欧几里得原着, 燕晓东编译
5 《数论报告》希尔伯特
6 《算术研究》高斯
7 《代数几何原理》哈里斯(Harris)
8. 《微积分学教程》菲赫金哥尔兹
9. 《有限群表示》J.P.塞尔
10. 《曲线和曲面的微分几何》杜卡谟
11. 《曲面论》达布
12. 《数论导引》华罗庚
13. 《代数学基础》贾柯伯逊
14. 《交换代数》阿蒂亚
⑧ 数学名书有哪些(加简介)
九章算术
我国古代数学专着,是算经十书中最重要的一种。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则
最早的数学着作《周髀算经》
《算经十书》
《算经十书》是指汉、唐一千多年间的十部着名数学着作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。
⑨ 最大的数学专着是什么涉及了哪些方面
《数学原本》是一本博大精深的着作,有7000多页,是有史以来最大的数学巨着。它涉及现代数学的各个领域,概括某些最新的研究成果,以其严谨而别具一格的方式,将数学按结构重新组织,形成了自己的新体系。内容包括集合论、代数、一般拓扑、实变函数轮、线性拓扑空间、黎曼几何、微分拓扑、调和分析、微分流形、李群等分支。1965年出到31卷,现在共有40卷。
⑩ 学数学有哪些名着必看
数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。
记住以下几点:
1,对于数学分析的学习,勤奋永远比天分重要。
2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。
3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。
4,看得懂的仔细看,看不懂的硬着头皮看。
5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。
6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。
7,经常回头看看自己走过的路
以上几点请在学其他课程时参考。
数学分析书:
初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。
中国人自己写的:
1《数学分析》陈传璋,金福临,朱学炎,欧阳光中着(新版作者顺序颠倒)
应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。
2《数学分析》华东师范大学数学系着
师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。
3《数学分析》陈纪修等着
以上三本是考研用的最多的三本书。
4《数学分析》李成章,黄玉民
是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。
5《数学分析讲义》刘玉链
我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。
6《数学分析》曹之江等着
内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n维扩展。适合初学者。国家精品课程的课本。
7《数学分析新讲》张筑生
公认是一本新观点的书,课后没有习题。材料的处理相当新颖。作者已经去世。
8《数学分析教程》常庚哲,史济怀着
中国科学技术大学教材,课后习题极难。
9《数学分析》徐森林着
与上面一本同出一门,清华大学教材。程度好的同学可以试着看一看。书很厚,看起来很慢。
10《数学分析简明教程》邓东翱着
也是一本可以经常看到的书,作者已经去世。国家精品课程的课本。
11许绍浦《数学分析教程》南京大学出版社
这些书应该够了,其他书不一一列举。从中选择一本当作课本就可以了。