导航:首页 > 数字科学 > 五年级下册数学什么是质因数

五年级下册数学什么是质因数

发布时间:2023-01-23 02:08:30

A. 五年级下册数学什么叫做质因数

因数有两种概念。具体是哪种要看具体问题确定。一种意义是乘法算式中的相乘的数叫因数,运算结果叫积。例如2*3。5=7中,2和
3。5都是因数,7是积。
另一种意义是一个自然数的因数。例如
5的因数是
1和5,
12的因数有1,2,3,4,6,12。

B. 五年级下册数学人教版的知识概括

小学五年级数学上册期末复习知识点归纳
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算.
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少.
如:1.5×0.8就是求1.5的十分之八是多少.
1.5×1.8就是求1.5的1.8倍是多少.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小.
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.
6、(P11)小数四则运算顺序跟整数是一样的.
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.
注意:如果被除数的位数不够,在被除数的末尾用0补足.
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.
②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数. 循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写.
加号、减号除号以及数与数之间的乘号不能省略.
17、a×a可以写作a•a或a ,a 读作a的平方. 2a表示a+a
18、方程:含有未知数的等式称为方程.
使方程左右两边相等的未知数的值,叫做方程的解.
求方程的解的过程叫做解方程.
19、解方程原理:天平平衡.
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立.
20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式.
22、方程的检验过程:方程左边=…… 23、方程的解是一个数;
=…… 解方程式一个计算过程.
=方程右边
所以,X=…是方程的解.
第五单元多边形的面积
23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长 字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】 字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高. 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转 27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行.
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍.
29、长方形框架拉成平行四边形,周长不变,面积变小.
30、组合图形:转化成已学的简单图形,通过加、减进行计算.
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适.
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码.
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区) 0 5 4 0 0 1
前3位表示邮区
前4位表示县(市)
最后2位表示投递局
35、身份证号码:18位

1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女.
第一单元 倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数.)
1、像0、1、2、3、4、5、6……这样的数是自然数.
2、像-3、-2、-1、0、1、2、3……这样的数是整数.3、整数与自然数的关系:整数包括自然数.
4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的.
5、找倍数:从1倍开始有序的找.
6、一个数倍数的特点: ①一个数的倍数的个数是无限的;
②最小的倍数是它本身;
③没有最大的倍数.
7、找因数:找一个数的因数,一对一对有序的找较好.
8、一个数因数的特点: ①一个数的因数的个数是有限的;
②最小的因数是1;
③最大的因数是它本身.
9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数.
10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数.
按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数
11、5的倍数的特征:个位是0或5的数是5的倍数.
12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数.
13、既是2的倍数又是5的倍数的特征:个位是0的数.
既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;
②各个数位上的数字的和是3的倍数
既是3的倍数又是5的倍数的特征:①个位是0或5的数;
②各个数位上的数字的和是3的倍数
既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数;
②各个数位上的数字的和是3的倍数
9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数
14、质数:一个数只有1和它本身两个因数,这个数叫质数.最小的质数是2,是唯一的质数中的偶数.
100以内的质数:
15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数.
1既不是质数也不是合数,最小的合数是4.
16、按一个数的因数个数分,自然数可以分为三类.
第二单元 图形的面积(一)
1、 长方形周长=(长+宽)×2 C = 2 ( a + b )
2、 长方形面积=长×宽 S = a b
3、 正方形周长=边长×4 C = 4 a
4、 正方形面积=边长×边长 S = a 2
5、 平行四边形面积=底×高 S = a h
6、 平行四边形底=面积÷高 a = S ÷ h
7、 平行四边形高=面积÷底 h = S ÷ a
8、 三角形面积=底×高÷2 S = a h ÷ 2
9、 三角形底=面积×2÷高 a = 2 S ÷ h
10、 三角形高=面积×2÷底 h = 2 S ÷ a
11、 梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
12、 梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
13、 梯形上底=梯形面积×2÷高-下底 a = 2 S ÷ h - b
14、 梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a
15、 1平方千米=100公顷=1000000平方米
16、 1公顷=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三单元 分数
1、 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数.
2、 分母:表示平均分的份数.分子:表示取出的份数.
3、 分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做
分数.表示其中的一份的数,叫做这个分数的分数单位.
4、 真分数:分子小于分母的分数叫做真分数.真分数小于1.
5、 假分数:分子大于或等于分母的分数,叫做假分数.假分数都大于或等于1.
6、 带分数:由整数和真分数组成的分数叫做带分数.
7、 假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变.
8、 整数化成假分数:用指定的分母做分母,用整数与分母的积做分子.
9、 带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变.
10、 质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数.
11 把一个合数用质因数相乘的形式表示出来,叫做分解质因数. 如12=2×2×3
12、几个数公有的因数叫做这几个数的公因数.其中最大的一个,叫做它们的最大公因数.
13 互质:两个数的公因数只有1,这两个数叫做互质.
互质的规律:
(1) 相邻的自然数互质;
(2) 相邻的奇数都是互质数;
(3) 1和任何数互质;
(4) 两个不同的质数互质
(5) 2和任何奇数互质.
质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
14、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数.
15、 求最大公因数,最小公倍数的方法
关系
最大公因数
最小公倍数
倍数关系
16、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的
分数是最简分数.
17、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过
程叫做约分.计算结果通常用最简分数表示.
18、 通分:把异分母分数分别化成同分母分数,叫通分.通常用最小公倍数
做分数的分母较简便.
19、 如何比较分数的大小:
分母相同时,分子大的分数大;
分子相同时,分母小的分数大;
分子分母都不同时,通分再比.
20、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分
数大小不变.
21、分数的意义两种解释:①把单位“1”平均分成4份,表示这样的3份.
②把3平均分成4份,表示这样的1份.
数学与交通:
1 相遇问题:
基本公式:一个人走:速度×时间=路程
两个人同时相对而行:速度和×相遇时间=两人共走路程
甲走的路程+乙走的路程=两人共走的路程
2、旅游费用:
①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选
择一种方案购票或几种方案结合起来购票.若只有A、B两种方案是,只要选择
其中一种价格便宜的就行.
②租车问题: 用列表法解决问题.两个原则:多用单价低的,少空座.
3、看图找关系:
①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么.
②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行
驶;线往下画,说明减速.
③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明
原地不动;线往下画,说明又从终点回到某地.
第四单元 分数加减法
1, 异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算.
2, 对计算结果的要求:能约分的要约成最简分数,是假分数要化成带分数.
3, 分数化成小数的方法:用分子除以分母,除不尽的保留两位小数.
4, 小数化成分数的方法:看小数部分有几位,就在1的后面加几个0做分母,去掉小数点做分子,能约分的要约分.
第五单元 图形的面积(二)
1, 求组合图形面积的方法:
(1) 分割法:将图形进行合理分割,形成基本图形,基本图形面积的和就是组合图形的面积.(和法)
(2) 添补法:将图形所缺部分进行添补,组成几个基本图形,基本图形面积-添补图形面积=组合图形面积.
2.不规则图形面积的估算:
(1)数格子的方法.
(2)把不规则图形看成近似的基本图形,估算出面积.
鸡兔同笼:
1, 列表法.
2, 假设法
3, 列方程
点阵中的规律:略
第六单元 可能性大小
1,用1表示事件一定发生,用0表示事件一定不会发生,用分数表示可能性的大小.
2,设计活动方案.
铺地砖:
1, 地面面积除以每块地砖面积=所铺地砖块数
2, 每平方米所需地砖块数乘以地面面积=所铺地砖块数
3, 列方程
4, 注意:转化单位,结果不是整块数用进一法取近似值

C. 五年级下册数学什么叫分解质因数怎么分解质因数把以下四个数分解质因数。

您好!
有四个不同质因数的最小自然数是210
这里怎么用得了短除法???格式您自己会写的吧。
210=2*3*5*7

D. 小学五年级数学什么是质数

一提起质数也许你不知道到底是啥?不过稍微有点数学基础的人就知道质数是数学里面的一种比较特殊数,同时也是一个比较常见的数。但是这个数却成就了很多数学上的难题无人解决,为啥质数就如此特殊,能够让无数科学家为之着迷?今天我就来谈谈这个问题。

首先什么是质数?其实质数是一种特殊的整数,比如我们知道0、1、2、3等都是整数,但是这些整数有一些特点,比如4可以可以由2*2组成,8可以由4*2组成。所以虽然整数有很多,但是大部分整数都是可以由其它整数相乘来构成,所以这些能够直接用整数构成的整数就显得有点“多余”。于是人们就想把这些所谓“多余”的数先去掉,看看有哪些“最基本”的数。


比如16这个数可以写成8*2,但是8本身又可以写成4*2,所以16就可以写成4*2*2,但是事情到这里就完了吗?没有,因为4也可以写成2*2,所以最后16就可以写成2*2*2*2,也就是说其实很多整数都可以用最后的几个简单的整数相乘表达出来。

其实以上的过程和分解质因数很相似了,基本的思路都一样,于是我们就想有没有一个判断标准可以一眼就判断出一个数“到底是否可以把它拆解成一些基本数呢”?由此质数的定义就呼之欲出了。什么是质数,就是只能被1和自身整除的数。比如1就是质数,因为它只能被1和它自身整除。2也是质数,因为它也是只能被1和自身整除。


那么9是不是质数呢?不是的,因为9除了可以被1和自身整除外,还可以被3整除。所以大家千万别以为只要是奇数就是质数,质数的定义是相当严格的:只能被1和自身整除的数。

有了质数的定义,那么我们就要看看整数中到底有多少个质数,由于我们的整数是有无限个,所以很自然的想到质数也应该有无限个才对,不过这只是直观的猜想,要证明质数有无限个,是需要严格的数学推理来解决的,不过这个已经被数学家解决了,所以质数的确是有无限个。

接下来就要研究质数在整数范围内是如何分布的了,到底质数是主要分布在整数的前面部位,还是说质数是均匀分布在整数当中的,等等问题,事情到了这个环节就开始变得复杂了,因为研究质数在整数里面的分布规律,已经由无数个科学家前仆后继的去研究,直到现在也没摸清楚它的规律所在。比如我例举一堆质数你看看:2、5、7、11、13、17、19、23等等,你看出质数分布的规律吗?不能的,你可以一直列举下去,发现质数在整数里面啥时出现,完全毫无规律的感觉。没错这就是质数的魅力,因为人们一直想寻找规律,却又一直找不到规律。


为啥质数的分布规律如此难找?因为根据定义,整数当中的质数可以说是“基本数”,所有的整数都可以由质数相乘得到,这种基本数似乎就暗含了万物的一些基本规律,所以质数的分布规律变得非常困难,由此产生了一大堆数学难题,比如黎曼猜想、哥德巴赫猜想等等问题。

其实我喊你找偶数在整数中的分布规律如何,明眼人一眼就看出来了,把偶数一列举出来0、2、4、6、8、10、12、14、16,看出来了吧,就是隔一个数就出现一个偶数,这个规律简单的不能再简单了,同样的道理奇数的分布规律也是相同。但是一到研究质数的分布规律,就麻烦了。


总之质数的奥秘可以说是数学上的千古难题,很多着名的猜想之所以现在都难以被证明,就是因为质数的分布规律实在难以找到,如果阅读本文的你对数学感兴趣,不妨去研究下哥德巴赫猜想,因为这个猜想不需要多深的数学基础就能理解到,说不定无数科学家不能证明的问题,你恰好解决了呢!我是小彭来给您解惑,如果喜欢文章可关注。

E. 五年级下册数学什么叫做质因数

每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数
如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数。而这个因数一定是一个质数。
说白了,质因数就是既是质数又是某个数的因数。
如:2是4的质因数

F. 在数学里什么是 质因数

分解质因数的原理每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。 分解质因数的含义一个合数用几个质数相乘的形式表示出来,叫做分解质因数。 例:12=2x2x3 这里2和3都是12的质因数。

G. 什么是质数什么是质因数两者有什么关系

质因数
每个合数都可以写成几个质数相乘的形式,这几个质数都叫做这个合数的质因数。
如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
质数
什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢?
质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。
有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。
被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4292967297=641*6700417,并非质数,而是合数。
更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑!
17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。
p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。

H. 人教版五年级下册数学中有关倍数与因数的知识点都有哪些

因数与倍数重要知识点.....
1. 因数、倍数概念:如果a×b=c(a、b、c都是不为0的整数)我们就说a和b都是c的因数c是a的倍数也是b的倍数。倍数和因数是相互依存的。
2. 一个数的因数个数是有限的,最小因数是1,最大因数是它本身。一个数的倍数个数是无限的,最小倍数是它本身,没有最大倍数。 3. 2、3、5倍数的特征。
(1)2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数。
(2)3的倍数的特征:一个数各位数上的和是3的倍数这个数是3的倍数。 (3)个位上是0、5的数都是5的倍数。 4.质数和合数。
(1)一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。最小的质数是2。
(2) 一个数,除了1和它本身还有别的因数,这样的因数叫做合数。最小的合数是4,合数至少有三个因数。 (3)1既不是质数,也不是合数。 5.质因数和分解质因数。
(1)每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
(2) 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例:30=2×3×5 6.最大公因数和最小公倍数。
(1) 几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。
(2)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
7.互质数:公因数只有1的两个数,叫做互质数。
8. 100以内质数:2、3、5、7、11、13、17、19、23、29、31、41、43、47、53、59、61、67、71、73、79、83、89、93、97 9. 13的倍数:26、39、52、65、78、91、104、117 17的倍数:34、51、68、85、102、119、136、153 19的倍数:38、57、76、95、114、133、152、171 因数与倍数专项练习题.......... 一.我会填.
1.一个数是3、5、7的倍数,这个数最小是( 105 ). 2.是3的倍数的最小三位数是( 102).
3.三个数相乘,积是70,这三个数是(2 )( 5 )( 7 )
4.同时是2、3、5的倍数的最小两位数是( 30 ),最大两位数( 90 )最小三位数( 120 )最大三位数( 990 )。
5.用8、5、1、0中三个数组成同时是2、3、5的倍数的最大三位数是( 810 )同时是3、5倍数的最小三位数是( 105 )。 6.100以内6和15的公倍数有(30、60、90)。 7.一个数最小倍数除以它的最大因数,商是( 1 )。
8.既是2的倍数,又是3的倍数,最小的一位数是(6 ),最大的三位数是( 996 )。
9.有两个不同质数的和是22,它们的积是( 85 )。
10.两个数是质数,那么它们的乘积是( 合数 )。
11.一个数是9的倍数,还是72的因数,这个数是( 18或36 )。 12.甲=2×3×5乙=2×3×7,甲和乙的最大公因数是( 6 )。 13.把154分解质因数是( 7 2 11)。
14.有两个连续自然数都是质数,这两个数的和是( 5 ) 15.两个质数得积一定是( 合数 ),两个合数的积一定是( 合数 )。 二.我会选。
1.下列各组数中,两个数只有公因数1的是( C )A.17和51 B.52和91 C.24和25 D.11和22
2.当a是自然数时,2a+1一定是( A )A.奇数 B.偶数 C.质数 D.合数
3.在自然数中,能同时被2、5整除的数一定是( C )A.质数 B.奇数 C.个位上是0的数
4.a是21的因数,a+21的值有( C)个A.2 B.3 C.4 D.5
5.要使四位数4 □27是3的倍数,□内应填( B )A.0、3、6、9 B.2、5、8 C.2、6 D.任何数字
三.我会算(计算最大公因数和最小公倍数) 1.56和42 2.225和15 3.54、72和90
解:7 168 解:15 225 解:18 1080 4. 84和105 5.66、165和231 6.13、26和52
解:21 420 解:33 2310 解:13 52 四.我会列.
1.三个连续自然数的和是72,这三个自然数分别是多少?如果是三个连续的偶数,这三个数又是多少?
解: 三个自然数为 23 24 25 三个连续偶数为 22 24 26 2.一块长45厘米,宽20厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形边长最长是多少厘米? 提示:找45和20的最大公因数 答:所锯成正方形边长最长是5厘米
3. 有一车饮料,如果3箱一数,还剩一箱;如果5箱一数,还剩一箱;如果7箱一数,也剩一箱,这车饮料至少有多少箱? 提示:找3,5,7的最小公倍数,加1即所求结果 答:这车饮料至少有106箱。
5.班级要召开联欢会,同学们剪彩带布置教室,有三根彩带,分别长18分米,24分米,48分米,要把它们剪成同样长的小段,不能有剩余,每段彩带最长多少分米?一共剪几段? 提示:找18,24,48的最大公因数 答:每段彩带最长是6分米,一共剪成15段。
6.一个长60分米,宽35分米的房间内铺同样大小的正方形地砖,铺的时候地砖要完整而没有剩余,地砖边长最大是几分米? 提示:找60,35的最大公因数 答:地砖边长最大是5分米
7.甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次,甲3天去一次,乙4天去一次,丙5天去一次,有一天他们三个恰好在图书馆相会。至少又过多少天他们又在图书馆相会? 提示:找3,4,5的最小公倍数 答:至少过60天他们又在图书馆相会。
8.级三个班分别有24人,36人,42人参加体育活动,要把它们分成人数相等的小组,但各班同学不能打乱,最多每组多少人?每班可以分几组?提示:找24,36,42的最大公因数
答:每组最多6人。每班分别可分4组 ,6组,7组
因数与倍数练习题一
一、判断题
( )1、任何自然数,它的最大因数和最小倍数都是它本身。 ( )2、一个数的倍数一定大于这个数的因数。 ( )3、个位上是0的数都是2和5的倍数。
( )4、一个数的因数的个数是有限的,一个数的倍数的个数是无限的。 ( )5、5是因数,10是倍数。
( )6、36的全部因数是2、3、4、6、9、12和18,共有7个。 ( )7、因为18÷9=2,所以18是倍数,9是因数。 ( )9、任何一个自然数最少有两个因数。
( )10、一个数如果是24的倍数,则这个数一定是4和8的倍数。 ( )11、15的倍数有15、30、45。
( )12、一个自然数越大,它的因数个数就越多。 ( )13、两个素数相乘的积还是素数。 ( )14、一个合数至少得有三个因数。
( )15、在自然数列中,除2以外,所有的偶数都是合数。 ( )16、15的因数有3和5。
( )17、在1—40的数中,36是4最大的倍数。 ( )18、1是16的因数,16是16的倍数。 ( )19、8的因数只有2,4。
( )20、一个数的最大因数和最小倍数都是它本身,也就是说一个数的最大因数等于它的最小倍数。
( )21、任何数都没有最大的倍数。 ( )22、1是所有非零自然数的因数。 ( )23、所有的偶数都是合数。 ( )24、素数与素数的乘积还是素数。
( )25、个位上是3、6、9的数都能被3整除。 ( )26、一个数的因数总是比这个数小。
( )27、743的个位上是3,所以743是3的倍数。 ( )28、100以内的最大素数是99。 二、填空。
1、在50以内的自然数中,最大的素数是( ),最小的合数是( )。 2、既是素数又是奇数的最小的一位数是( )。 3、在20以内的素数中,( )加上2还是素数。
4、如果有两个素数的和等于24,可以是( )+( ),( )+( )或( )+( )。
5、一个数的最小倍数减去它的最大因数,差是( )。 6、一个数的最小倍数除以它的最大因数,商是( )。
7、一个自然数比20小,它既是2的倍数,又有因数7,这个自然数是()。 8、如果a的最大因数是17,b的最小倍数是1,则a+b的和的所有因数有( )个;a-b的差的所有因数有( )个;a×b的积的所有因数有( )个。 9、比6小的自然数中,其中2是( )的因数,又是( )的倍数。
10、个位上是( )的数,都能被2整除;个位上是( )的数,都能被5整除。
11、在自然数中,最小的奇数是( ),最小的偶数是( ),最小的素数是( ),最小的合数是( )。
12、同时是2和5倍数的数,最小两位数是( ),最大两位数是( )。 13、1024至少减去( )就是3的倍数,1708至少加上 ( )就是5的倍数。 14、素数只有( )个因数,它们分别是( )和( )。
15、一个合数至少有( )个因数,( )既不是素数,也不是合数。 16、自然数中,既是素数又是偶数的是( )。 17、在20至30中,不能分解质因数的数是( )。
18、三个连续偶数的和是186,这三个偶数是( )、( )、 ( )。 19、我是54的因数,又是9的倍数,同时我的因数有2和3。( ) 20、我是50以内7的倍数,我的其中一个因数是4。( ) 21、我是30的因数,又是2和5的倍数。( )
22、我是36的因数,也是2和3的倍数,而且比15小。( )
23、 根据算式25×4=100,( )是( )的因数,( )也是( )的因数;( )是( )的倍数,( )也是( )的倍数。 24、在1—20的自然数中,奇数有( ),偶数有( )素数有( ),合数有( )。
25、 在18、29、45、30、17、72、58、43、75、100中,2的倍数有( );3的倍数有( );5的倍数有( ),既是2的倍数又是5的倍数有( ),既是3 的倍数又是5的倍数有( )。
26、 48的最小倍数是( ),最大因数是( )。最小因数是( )。 27、 用5、6、7这三个数字,组成是5的倍数的三位数是( );组成一个是3的倍数的最小三位数是( )。
28、一个自然数的最大因数是24,这个数是( )。
29、在 27、68、44、72、587、602、431、800中。(共4分) 奇数是: 偶数是:
30、在2、3、45、10、22、17、51、91、93、97中。(共5分) 素数是: 合数是: 31、按要求做。(6~7题共12分)
从0、3、5、7、这4个数中,选出三个组成三位数。 (1)组成的数是2的倍数有: (2)组成的数是5的倍数有: 。 (3)组成的数是3的倍数有: 32、偶数+偶数= 奇数+奇数= 偶数+奇数=
33、幼儿园的大班有36个小朋友,中班有48个小朋友,小班有54个小朋友。按班分组,三个班的各组人数一样多,问每组最多有( )个小朋友。 三、选择题
1、15的最大因数是( ),最小倍数是( )。 ①1 ②3 ③5 ④15
2、在14=2×7中,2和7都是14的( )。 ①素数 ②因数 ③质因数
3、一个数,它既是12的倍数,又是12的因数,这个数是( )。 ①6 ②12 ③24 ④144
4、一筐苹果,2个一拿,3个一拿,4个一拿,5个一拿都正好拿完而没有余数,这筐苹果最少应有( )。
①120个 ②90个 ③60个 ④30个
5、自然数中,凡是17的倍数( )。 ①都是偶数 ②有偶数有奇数 ③都是奇数
6、下面的数,因数个数最多的是( )。A 18 B 36 C 40
7、两个素数的和是( )。A 偶数 B 奇数 C奇数或偶数 8、自然数按是不是2的倍数来分,可以分为( )。A奇数和偶数 B素数和合数 C素数、合数、0和1
9、1是( )。A 素数 B 合数 C 奇数 D 偶数
10、甲数×3=乙数,乙数是甲数的( )。A 倍数 B 因数 C 自然数
11、同时是2、3、5的倍数的数是( )。A 18 B 120 C 75 D 810 四、应用题。
1、一个小于30的自然数,既是8的倍数,又是12的倍数,这个数是多少? 2、当a分别是1、2、3、4、5时,6a+1是素数,还是合数?
3、 幼儿园里有一些小朋友,王老师拿了32颗糖平均分给他们,正好分完。小朋友的人数可能是多少?
4、小朋友到文具店买日记本,日记本的单价已看不清楚,他买了3本日记本,售货员阿姨说应付134元,小红认为不对。你能解释这是为什么吗?
因数与倍数练习题二 一、填空。(33%)
(1)6×4=24,6和4是24的( ),24是6的( ),也是4的( )。 (2)24的因数有( )。 (3)下面的数中,把质数划去,留下合数。
2 9 23 27 28 29 31 35 37 39 51
(4)一个数,既是12的倍数,又是12的因数,这个数是( )。 (5)两个都是质数的连续自然数是( )和( )。 (6)在15、18、29、35、39、41、47、58、70、87这些数中: ①是偶数的有( ); ②是奇数的有( ); ③有因数3的是( ); ④5的倍数有( )。 (7)最小的自然数是( ),最小的质数是( )最小的合数是( )。
(8)有因数3,也是2和5的倍数的最小三位数是( )。 (9)在0、1、7、8中选3个数字,组成一个能同时被3、5整除的最小三位数是( )。
(10)三个连续奇数的和是45,这三个奇数分别是( )、( )和( )。 (11)100以内最大的质数与最小的合数的和是( ),差是( )。 (12)是42的因数,又是7的倍数,这些数有( )、( )、( )、( )、。
(13)凡是5的倍数,个位上一定是( )或( )。 (14)既是3的倍数,又是5的倍数的最大两位数是( )。 (14)67至少要加上( )就是3的倍数。
(15)两个质数和为18,积是65,这两个质数是( )和( )。 二、判断题。下列说法正确的在括号里打“√”,错误的打“×”。并订正。(8%) (1)在自然数中与1相邻的数只有2。………………………………………( ) 订正:
(2)3的倍数,一定是9的倍数。……………………………………………( ) 订正:
(3)奇数都比偶数小。…………………………………………………………( ) 订正:
(4)质数的因数只有一个。……………………………………………………( ) 订正:
(5)个数上是3、6、9的数,都是3的倍数。……………………………( ) 订正:
(6)一个数的因数的个数是无限的。………………………………………( ) 订正:
(7)质数一定是奇数,合数一定是偶数。…………………………………( ) 订正:
(8)两个质数的和一定是偶数。……………………………………………( ) 订正:
三、选择题。将正确答案的序号填在题中的括号里。(8%) (1)一个数是3的倍数,这个数各位上数的和( )。 ①大于3 ②等于3 ③是3的倍数 ④小于3 (2)一个合数至少有( )。
①一个因数 ②二个因数 ③三个因数 ④四个因数 (3)87是( );41是( )。
①合数 ②质数 ③因数 ④倍数 (4)既不是质数又不是合数的是( )。 ①1 ②2 ③3 ④4 (5)42÷3=14,我们可以说( )。
①42是倍数 ②3是因数 ③ 42是3的倍数 ④42是3的因数 (6)两个奇数的和( )。
①一定是奇数 ②一定是偶数 ③可能是奇数也可能是偶数 ④一定是质数 (7)几个质数之积一定是( )。
①奇数 ②偶数 ③合数 ④质数 (8)5和7都是35的( )。
①奇数 ②偶数 ③因数 ④倍数 四、解方程。(6%)
(1)X ÷ 36=0.4 (2)8X-9.1=22.9 (3)36+2X=78.6 (4)4×0.9+3X=46.2 五、列方程解文字题。(4%)
(1)一个数的13倍加4与1.7的积,和是162,这个数是多少? (2)一个数的3倍减去5.8,差是13.4,求这个数。 六、按要求完成下列各题。(41%) (1)在圈内写上合适的数。(4%)
60的因数 50以内6的倍数
(2)从四张数字卡片中选出三张,按要求组成三位数。(10%)
①奇数 ②偶数 ③3的倍数 ④5的倍数 ⑤既是2的倍数,又是5的倍数 (3)在括号里填上适当的质数。(8%)
①8=( )+( ) ②12=( )+( )+( ) ③15=( )+( ) ④18=( )+( )+( ) ⑤24=( )+( )=( )+( )=( )+( ) (4)在1~100的自然数中写出9的所有倍数。(4%)
(5)在□里填上一个数字,使这个数成为3的倍数。(写出所有填法)(6%) □8 4□6 2 3□1
(6)写出一些三位数,这些数都同时是2、3、5的倍数。(每种写两个数)(6%)
①有两个数字是质数: ②有两个数字是合数: ③有两个数字是奇数:
(7)1+2+3+……+999+1000+1001的和是奇数还是偶数?请写出理由。(3%)
因数与倍数练习题三 一、填空(30分)
1、像0,1,2,3,4,5,6,……这样的数是( ) 2、像-3,-2,-1,0,1,2,3,……这样的数是( )
3、有一个算式7×8=56,那么可以说( )和( )是( )的因数,( )是( )和( )的倍数。 4、是2的倍数的数叫( )。 5、不是2的倍数的数叫( )。
6、凡是个位上是( )或( )的数,都是5的倍数。一个数既是2的倍数,又是5的倍数,这个数的个位上的数字一定是( )。
7、一个数各个数位上的数字加起来的和是9的倍数,那么这个数也是( )的倍数。如果要让□729成为3的倍数,那么□里可以填( )。 8、一个数只有( )两个因数,这个数叫作质数。
一个数除了( )以外还有( ),这个数叫做合数。合数最少有( )个因数,质数只有( )个因数。 9、要使5□是质数,□可以填( )
10、最小的质数是( ),最小的合数是( )。 11、写出1~20的所有质数是( ),
1~20中共有( )个质数,在1~20中,共有( )个合数。( )既不是质数,也不是合数。
12、有一个比14大,比19小的奇数,它同时是质数,这个数是( )。 13、任何大于6的质数除以6,肯定有余数,余数只会是( )或( )。 14、有一个两位数,它是2的倍数,同时,它的各个数位上的数字的积是12,这个两位数可能是 ( )。 二、判断(6分)
1、大于2的所有的偶数都是合数。 ( ) 2、除2以外,所有的质数都是奇数。 ( ) 3、6的所有倍数都是合数。 ( )
4、一个数是9的倍数,这个数一定也是3的倍数。 ( ) 5、连续的两个自然数相加的和一定是奇数。 ( ) 6、8是因数,12是倍数。 ( )

I. 人教版五年级下册数学中有关倍数与因数的知识点都有哪些

是这个吗?

两个数共有的倍数是这两个数的公倍数,由于一个数的倍数有无数个,所以两个数的公倍数也是无数个。因此在写两个数的公倍数时要在最后写上省略号,其中最小数是这两个数的最小公倍数。找两个数的公倍要注意,一从小到大依次找,最后写省略号,二是不要简单认为两个数的最小公倍数是这两个数的积。

阅读全文

与五年级下册数学什么是质因数相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1401
沈阳初中的数学是什么版本的 浏览:1347
华为手机家人共享如何查看地理位置 浏览:1039
一氧化碳还原氧化铝化学方程式怎么配平 浏览:881
数学c什么意思是什么意思是什么 浏览:1405
中考初中地理如何补 浏览:1296
360浏览器历史在哪里下载迅雷下载 浏览:698
数学奥数卡怎么办 浏览:1384
如何回答地理是什么 浏览:1020
win7如何删除电脑文件浏览历史 浏览:1052
大学物理实验干什么用的到 浏览:1481
二年级上册数学框框怎么填 浏览:1696
西安瑞禧生物科技有限公司怎么样 浏览:962
武大的分析化学怎么样 浏览:1244
ige电化学发光偏高怎么办 浏览:1334
学而思初中英语和语文怎么样 浏览:1647
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1483
数学中的棱的意思是什么 浏览:1054