导航:首页 > 数字科学 > 数学和数根有什么区别

数学和数根有什么区别

发布时间:2023-01-23 02:55:31

1. 数根(Digital Root)

       例如给定38,3+8=11,1+1=2,则2就是其数根

推导过程转自: https://blog.csdn.net/ray0354315/article/details/53991199

小结:

题目虽然简单,可以用递归硬解,但是算法的目的就是更快更高效。(数学的重要性😭)

还看到很多用字符数组存储,开辟1000个数组空间,吓死人,不仅效率低,还浪费计算机性能。

2. 根数是什么

数根(又称数字根,数字的根Digital root)是自然数的一种性质,换句话说,每个自然数都有一个数根。

将一正整数的各个位数相加(即横向相加)后,若加完后的值大于等于10的话,则继续将各位数进行横向相加直到其值小于十为止所得到的数,即为数根。换句话说,数根是将一数字重复做其数字之和,直到其值小于十为止,则所得的值为该数的数根。例如54817的数根为7,因为5+4+8+1+7=25,25大于10则再加一次,2+5=7,7小于十,则7为54817的数根。

(2)数学和数根有什么区别扩展阅读:

1、算术平方根

平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根。 例:9的平方根是±3 注:有时我们说的平方根指算术平方根。

2、二次方根

若一个数x的平方等于a,那么这个数x就叫做a的平方根(square root,也叫做二次方根),通俗的说,就是一个数乘以它的本身,等于另一个数,原来的那个数就是乘完的那个数的平方根。

3. 数根是什么时候学的

华蘅芳(1833~1902)
咸丰九年(1859年)秋,华蘅芳写出了他的第一部数学着作《抛物线说》。徐寿为之作图。咸丰十一年,华蘅芳和徐寿受曾国藩推荐入其幕府。同治元年(1862年)三月,与徐寿一起到曾国藩创办的安庆内军械所从事机动船的研制。他们经过周密的计算和设计,用3个月时间制造出我国第一台蒸汽机。接着又于同治四年设计制成我国第一艘机动轮船,命名“黄鹊”号。同年,他到上海江南机器制造总局参加筹建工作。
同治六年,徐寿次子建寅受曾国藩派遣,亦来到上海襄办江南机器制造总局。华蘅芳协助徐寿主持技术方面的工作,他与美国友人玛高温合译(玛作口译,由其笔述)出版了有关矿物学的译着《金石识别》。他又协助徐寿在制造局内创设翻译馆。同治十一年,他写出《开方别术》一书,被当时着名数学家李善兰推为杰作。此后,他与玛高温、博兰雅先后合译了《地学浅释》、《防海新论》《御风要术》等书,于同治十二年相继出版。是年,他和徐寿、徐建寅并任江南机器制造总局提调。同治十三年,与英人傅兰雅又先后合译《代数术》、《微积溯源》由江南机器制造总局出版。光绪二年(1876年),华蘅芳助徐寿创办的上海格致书院开学,他主讲数学。与傅兰雅合作,又先后译出《三角数理》、《代数难题解》、《决疑数学》等,还编写出版了《开方古义》、《算法须知》、《数根术解》、《积较术》、《学算笔谈》等着作。光绪十三年,华蘅芳主讲天津武备学堂。在此期间,他撰写了《测量法》,并与傅兰雅合译了《合数术》等书。光绪十八年,他主讲湖北武昌两湖书院和自强学堂,写出《求乘数法》、《数根演古》、《循环小数考》、《算学琐语》等着作。
光绪十三年(1887)他曾在天津武备学堂中任教习,光绪十八年(1892)在湖北武昌主讲两湖书院。他的学生江蘅、杨兆鋆等以及胞弟华世芳(字若溪,1854~1905)受到他的影响都成为数学家。光绪二十二年,先后担任常州龙城书院和江阴南箐书院院长。晚年在家乡俟实学堂讲学。他讲授时,深入浅出,启发诱导,鼓励学生独立思考。当时中国制造火药,需要大量硝镪水原料,国内不能生产,只得依赖进口。但是欧美国家乘人之危抬高价格。华蘅芳得知此事,十分气愤,表示要“自制镪水以塞漏卮”。他经过反复研究、实验,终于在龙华火药厂研制成功,所需成本只有进口的三分之一,从而为国家节约了大量资金,打破了列强的垄断。
他在天津武备学堂任教时,学堂因教学需要,从德国引进了一部“试弹速率机”,但是没有人知道它的性能及使用方法。华蘅芳运用他在数学领域的丰富知识,向大家一一讲清了这部机器的道理和使用方法。人们对他由衷地敬佩,并为中国有这样的学者而自豪。
华蘅芳官至四品,但非从政。他不慕荣利,穷约终身,坚持了科学、教育的道路,与李善兰、徐寿齐名,同为中国近代科学事业的先行者。他一生“敝衣粗食,穷极终身”,“未尝求禄仕进”,把毕生精力献给了自然科学事业,为我国数学的发展作出了卓越贡献。最后将一些有创见的着作,合刻为《行素轩算稿》一书。光绪二十八年逝世,终年69岁。作为近代中国的卓越的数学家、爱国的科学家,他的名字和业绩永留青史。

4. 怎么判断带根号的数是有理数还是无理数

要看根号下的那个数是不是完全平方数,即它能写成另一个数的平方。如果是一个完全平方数,开根号后就是有理数;反之,是无理数。

数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

等。

而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。

5. 实数根和根有什么异同吗

实数根是在实数范围内的的根。
跟范围就大可以是整数根,负数根,有理数根,无理数根,复数根等等。

6. 质数和合数的来源是什么

相关数学机构的定义。质数是只有1和本身两个约数的数(约数的个数是2)。 合数是除了1和本身两个约数外,还有别的约数的数(约数的个数至少是3个)。

7. 根的类型及如何区分

慢慢总结
根的类型有;
从大的方面说有:有理数根和无理数根两种
你告诉你老师就说有这两种,老师绝对不敢说你错了。就这样好吧?

8. 数学的根是什么意思

“根”就是方程的解,求某方程的根就是求这个方程的解;
比如,方程3x=12的根是4

9. 数学是什么

数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。


数学【shù xué】(希腊语:μαθηματικ?)源自于古希腊语的μ?θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义和与学习有关的,亦会被用来指数学的。其在英语的复数形式,及在法语中的复数形式+es成 mathématiques,可溯至拉丁文的中性复数mathematica,由西塞hjt数学(math)。以前我国古代把数学叫算术,又称算学,最后才改为数学。
它的意义
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
数学史
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。

编辑本段数学研究的各领域
数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连着。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之着名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 结构 许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间 空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及 数,且包含有非常着名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演着核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。 基础与哲学 为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”。对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.” 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。

数学天才──高斯(C.F. Gauss) 高斯是德国数学家、物理学家和天文学家。 高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出。7岁那年,高斯第一次上学了。 在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。 高斯的学术地位,历来被人们推崇得很高。他有“数学王子”、“数学家之王”的美称。
艾萨克·牛顿
牛顿(Isaac Newton) 是英国较为着名的物理学家和数学学家。 艾萨克·牛顿
在学校里,牛顿是个古怪的孩子,就喜欢自己设计、自己动手,做风筝、日晷、滴漏之类器物。他对周围的一切充满好奇,但并不显得特别聪明。 1665~1666年严重的鼠疫席卷了伦敦,剑桥离伦敦不远,为恐波及,学校因此而停课,牛顿于1665年6月离校返乡。一天在树下闲坐,看到一个苹果落在地上,便开始捉摸,这种将苹果往下拉的力会不会也在控制着月球。由此牛顿推导出物体的下落速度改变率与重力的大小成正比,而重力大小与距地心距离的平方成反比。后来牛顿的棱镜实验也使他一举成名。 牛顿最卓越的数学成就是创立了微积分,此外对解析几何与综合几何都有比较显着的贡献。 牛顿有两句名言是大家所熟知的。他在一封信中写道:“如果我比别人看得远些,那是因为我站在巨人们的肩上。”据说他还讲过:“我不知道世人对我怎么看;但在我自己看来就好像只是一个在海滨嬉戏的孩子,不时地为比别人找到一块光滑的卵石或一只更美丽的贝壳而感到高兴,而我面前的 戈特弗里德·威廉·凡·莱布尼茨
浩瀚的真理海洋,却还完全是个谜。”
960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。 从11~14世纪约300年期间,出现了一批着名的数学家和数学着作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。 从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。 把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中“田亩比类乘除捷法”卷,介绍了原书中22个二次方程和 1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。 秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,秦九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。 元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在“缀术推星”题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。 用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术着作是李冶的《测圆海镜》。 从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。 朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。 勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。 已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。 中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。 宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,“通神明”的数学是不存在的,只有“经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的“用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。
中西方数学的融合
中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。 16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。 从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。 随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的着作在国内外流传很广,影响很大。 1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。
在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译着作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它“不必疑”、“不必改”,“举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。 其次应用最广的是三角学,介绍西方三角学的着作有《大测》《割圆八线表》和《测量全义》。《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有这些,在当时历法工作中都是随译随用的。 1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中通所着《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。 清初学者研究中西数学有心得而着书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学着作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的着作。 清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些着作。1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。1721年完成《律历渊源》100卷,以康熙“御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文着作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等数学网络全书,并有康熙“御定”的名义,因此对当时数学研究有一定影响。 雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。 随着《算经十书》与宋元数学着作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。 与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记—《畴人传》,收集了从黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学着作传世的不足50人),和明末以来介绍西方天文数学的传教士41人。这部着作全由“掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一手的原始资料,在学术 数学家华罗庚
界颇有影响。 1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展“洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学着作。 其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。 《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所着的符号代数学译本;《决疑数学》是第一部概率论译本。在这些译着中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些着作便成为主要教科书。 在翻译西方数学着作的同时,中国学者也进行一些研究,写出一些着作,较重要的有李善兰的《尖锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思想的研究成果。 由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。
编辑本段中国古代着名数学家

在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.——康扥尔 只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡。 ——希尔伯特 在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么. ——毕达哥拉斯 一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。 ——马克思 一个国家的科学水平可以用它消耗的数学来度量. ——拉奥 柯西 (Augustin Louis Cauchy 1789-1857) 如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。给我五个系数, 笛卡儿(Rene Descartes 1596-1650) 我思故我在。 我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。 数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。 欧拉(Leonhard Euler 1707-1783) 虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。 因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情 祖冲之(429-500) 迟序之数,非出神怪,有形可检,有数可推。 刘徽 事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。 拉普拉斯(Pierre Simon Laplace 1749-1827) 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。 在数学这门科学里,我们发现真理的主要工具是归纳和类比。 读读欧拉,读读欧拉,他是我们大家的老师。 一个国家只有数学蓬勃发展,才能表现她的国力强大。 认识一位巨人的研究方法,对于科学的进步并不比发现本身更少用处。科学研究的方法经 常是极富兴趣的部分。 莱布尼茨(Gottfried Wilhelm von Leibniz 1646-1716) 虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。 不发生作用的东西是不会存在的。 考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标 西尔维斯特(James Joseph Sylvester 1814-1897) 几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。 也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其他数学家加在一起还要多。 魏尔斯
编辑本段现代数学衍生品
数学的出现,增加了很多学生的烦恼,但是数学也一直是大家无法回避的一个话题,数学的难题,让很多人不知所措。当今,更是出现了很多的的数学辅导班,各类的家教班。但是数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科 由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。

10. c++这求数根的程序是什么意思。数根是把一个数的各位数加起来,直到这个数为一位。例如:49=4+9=13=1+3=4

数根(又称数字根Digital root)是自然数的一种性质,换句话说,每个自然数都有一个数根。
数根是将一正整数的各个位数相加(即横向相加),若加完后的值大于等于10的话,则继续将各位数进行横向相加直到其值小于十为止,或是,将一数字重复做数字和,直到其值小于十为止,则所得的值为该数的数根。
这个程序就是计算一个数的数根。数根在数学里是一个有用的东西。例如:要求一个数除以3或9的余数,可以直接用其数根除以3或9得到;再如:有一种乘法验算的办法,就是用两个因数的数根相乘得到的积的数根与原来因数相乘的积的数根比较,如果不相等,则运算肯定不对。除法也有类似规律。

阅读全文

与数学和数根有什么区别相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1401
沈阳初中的数学是什么版本的 浏览:1347
华为手机家人共享如何查看地理位置 浏览:1039
一氧化碳还原氧化铝化学方程式怎么配平 浏览:881
数学c什么意思是什么意思是什么 浏览:1405
中考初中地理如何补 浏览:1296
360浏览器历史在哪里下载迅雷下载 浏览:698
数学奥数卡怎么办 浏览:1384
如何回答地理是什么 浏览:1020
win7如何删除电脑文件浏览历史 浏览:1052
大学物理实验干什么用的到 浏览:1481
二年级上册数学框框怎么填 浏览:1696
西安瑞禧生物科技有限公司怎么样 浏览:962
武大的分析化学怎么样 浏览:1244
ige电化学发光偏高怎么办 浏览:1334
学而思初中英语和语文怎么样 浏览:1647
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1483
数学中的棱的意思是什么 浏览:1054