导航:首页 > 数字科学 > 数学基础训练举例说说怎么估算

数学基础训练举例说说怎么估算

发布时间:2023-01-23 08:20:45

A. 估算怎么算

估算的口诀原则主要包括7个。

1、去尾法。即把每个数的尾数去掉,取整十或整百数进行计算。

2、进一法。即在每个数的最高位上加1,取整十整百数进行计算。

3、四舍五入法。即尾数小于或等于4的舍去,等于或大于5的便入进去,取整十或整百数进行计算。

4、凑十法。即把相关的数凑起来接近10的先相加。

5、部分求整体,几把一个大的整体平均分成若干份,根据部分数求出整体数。

6、以某一标准进行实际估计,一是利用计数单位进行估计,二是利用计量单位进行估计,三是以某一物体为参照物进行估计。

7、凑整法,把数量看成整式,整百整千在计算,是最常用的估算方法。

估算在学习当中的意义

估算在学习当中具有重要的意义,可以让学生根据已知情境确定数的大致范围,在这个过程中理解并参透提议,从而进一步去解决问题。

老师应该加强对估算教学的重视,突出对估算意识的培养,要鼓励算法的多样化,选择合适的估算方法,让学生自由表达。在估算学习中,教师和家长要营造一种宽松的学习氛围,鼓励学生大胆尝试培养估算意识,提高估算能力。

B. 数学估算技巧

技巧:使用加减法估算方法。

100以内加减法的估算,核心就是让计算更简便,我们放弃了精确结果,一定要在计算效率上有提升。主要使用的方法就是找整十数:看与一个数最接近的整十数是多少,把它看成这个整十数再进行计算。

在这里可能需要进阶学习“四舍五入”的方法,也就是个位是1~4的情况下,舍去个位;个位是5~9的情况下,舍去个位,向十位进一。

C. 小学三年级数学课,什么是估算,我不明白,有人能举例告诉我一下吗感谢

估算一般有四种估法:
1.四舍五入
2. 进一法
3.去尾法
4.数量单位估计法
例如:
l、低位估算法:即只计算算式中的最低位就能预知或用此法检验原式的值是否准确,此法常用于验算。如:467-198的简便算法,学生对多减要加上还是要再减,往往易错,只要口算17-8=9从结果的个位可预知原式的正确率。

2、高位估算:即只计算算式中几个已知数的最高位,然后根据最高位的运算结果估计整个算式的值的正确率。如:4278÷73,因4278≈4200,73≈70,从4200÷70=60中,可判断商的最高位是否正确。

3、数位估算方法:根据数位原则及积商的定位规律,即积的位数等于两个因数之和或比这个和少1;商的位数等于被除数的位数,减去除数的位数所得的差,或比这个差少1等法则进行估算,如:267×82= ,因高位数四舍五入后3×8=24,24≥10所以原式的位数是五位数;246×32=,因高位数四舍五入是2×3=6,6<10,所以原式的值的位数是四位数,又如:7298÷36= 几位数,因被除数四位减除数两位等于2,且前两位够除,所以原式的商是三位数。

4、近似估算法:对于一些较复杂的乘法或除法;在笔算中常以估算作为基础,先把各个已知数四舍五入变为近似整十、整百、整千的数,就可以估算出结果的粗略的值。如估算7832×63,由于7832≈8000,63≈60,8千乘以6十的积是48万,所以7832×雨的3大约等于48万,又如估算56427÷732,被除数、除数近似于560个百和7个百,560百÷7百=80,所以计算结果大约是80。

5、观察估算法:观察有关已知数,通过估算,可以快捷地判断谁大,谁小或计算的准确度。如:比较大小,80+20×80+200(80+20)×(80+20)及4/7和5/11选择题32.7×1.5=( )A.4.905 B.49.05 C.49.07 D.490.5;判断6/7+4/5比____小,比___大。

6、直觉估算法:学习计量单位以后,教师引导学生结合生活实例,凭借学生的直观感知进行估算,如:1米有多长,l00米呢?100O米呢?又如:目测,步测估算并长度、面积等。

7、口算估算法:在计算中,除了必须熟记加法表和乘法口诀外,记住一些特殊的数的计算结果,对于估算也十分有益,例如:25×4=100,125×8=1000,15×4=60,18×5=90,12×12=144等,利用这些基本口算也可进行估算,如1248×813.由于题中的两个已知数分别接近于1250和800,所以利用125×8=1000,估算出1248×813的大约结果。

8、综合估算法:将观察对象看作一个整体,综合用各方面知识进行估算,如:不用计算,估计下面哪道题的积最大,并说明理由。

82×88 83×87 84×86 85×85

D. 小学三年级数学加减法估算题应该怎么估

估算分以下三种情况:

一是推算最大值。

二是推算最小值。

小学三年级加减法估算方法大于5就估大,小于5就估小。也可以理解为四舍五入:0,1,2,3,4,均不进位;5,6,7,8,9,进位。

例如:小明妈妈去商场买醋与酱油,醋的价格是17元,酱油的价格是12元,估算一下,小明妈妈需要带多少钱?这个就应该这样估算,17≈20,12≈10,20+10=30(元)。

答:小明妈妈需要带30元钱。

减法简介:

减法是一种数学运算,表示从集合中移除对象的操作。它的符号是负号(−)。例如,在右边的图片,有5−2 苹果,5苹果,2个被带走,就剩下了3个苹果。因此5−2 = 3。减法表示用不同的对象(包括负数、分数、无理数、向量、小数、函数和矩阵)去除或减少物理和抽象的量。

减法遵循几个重要的模式。它是反交换的,意味着改变顺序改变了答案的符号。它不具有结合性,也就是说,当一个减数超过两个数字时,减法的顺序是重要的。

减法0不改变一个数字。减法也遵循与加法和乘法等相关运算的可预测规则。所有这些规则都可以被证明,从整数的减法开始,并通过真实的数字和其他东西来概括。继续这些模式的一般二元运算在抽象代数中学习。

E. 估算怎么算

问题一:估算是什么?怎样估算? 一、什么是估算、怎么进行估算?
什么是估算?所谓的估算就是大致推算。估算有三种情况:一是推算最大值,二是推算最小值,三是推算大约多少。怎么估算呢?估算都要先对参加计算的数值取其近似值,把一个比较复杂的计算变成可以口算的简单计算,得到一个近似值,如:估算32×58,最大值:都按比原来大的整十数算,最大是40×60=2400;最小值:都按比原来小的整十数算,最小是30×50=1500;约等于多少:用“四舍五入法”取接近的数算,大约在30×60=1800左右。
二、估算比精确计算容易算吗?
郸有人认为:估算都是把复杂的计算变成可以口算的简单计算,所以估算比笔算容易得多。估算真的比精确计算容易吗?我们不妨从以下两个方面来分析:
⑴思维过程:所有的笔算都有其复杂的算理,学生学习笔算时都是先进行复杂的思维分析、逻辑推理,然后对计算过程进行比较、分析、归纳得出计算的法则,计算过程中的复杂的思维活动就是计算的算理,是计算的依据,而计算法则是简约了复杂的思维活动的按一定程序演算的程式化的操作方法,所以在笔算过程中不再思考每步计算的道理,这样大大降低了思维难度、减轻了思维强度,只要进行一定量的训练就能达到正确、迅速计算的水平,所以在笔算过程中没有复杂的思维活动。而估算就不同了,所有的思维过程都不可简约,必须一步一步地思考和推理,如:估算32×58,先思考:32接近几十、记忆30,再思考:58接近几十、再记忆60,接着提取第一个记忆信息30,再思考:3×6=18、30和60末尾一共有2个0、所以在18后面添2个0得1800,由于30比32小、60比58大,所以1800不是最大值也不是最小值,得数应当在1800左右。从思维强度看估算要经历多次思考、多次记忆、提取信息、计算、比较、判断等一系列的思维活动,所以估算要比笔算的思维难度大。
⑵工作记忆:工作记忆属短时记忆,是一短暂时刻的知觉。心理学研究表明:成人的工作记忆只能记住大约5~9个独立的信息单位,儿童的工作记忆的信息量更少。由于用竖式计算是每算一步就写一个数字,头脑里只要记住“进几”、“是否退1”和“几十几加几”,工作记忆的信息一般只有一、两个,所以在计算过程中工作记忆的信息量很少。但是估算就不一样了:先要思考每个数的近似数是多少、记忆近似数,取提记忆里的相关信息,再计算,因此头脑里记忆的信息量要比竖式计算多得多,甚至会超出小学生的记忆能力,所以估算要比笔算难度大。

问题二:小学三年级估算怎么算没学会 我教你

问题三:小学三年级估算用法怎么算 在小学数学教学中,估算越来越受到教师和学生们的重视,在倡导“有用的数学”这一大的教学环境下,估算更是备受青睐。增强学生的估算意识,让小学生掌握一些简单的估算方法,对帮助学生学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中的问题,从而培养他们的数感及数学应用意识都有积极的意义。那么如何培养三年级学生的估算能力?下面结合三年级的教学实践,谈一谈自己的感受。
一、优化数学策略,强化估算意识。
培养学生估算能力的前提要培养学生有估算意识。要想加强学生的估算意识,首先要在具体的情境中改变学生对估算的态度,正确认识估算的价值。
我们现用的三年级教材里,为了培养学生的估算意识,增加了很多让学生用估算解决的具体情境,如购物付钱、购买公园门票、租车等,但还远远不够。在目前情况下,学生在估算方面的体验不多,他们往往不知道什么时候、在什么场合什么情况下需要估算。因此,遇到问题时一般都想到准确计算。所以教师要多创设一些需要用估算来解决的具体情境,让学生不断地感受用估算来解决具体问题的体验,以培养学生的估算意识。这就需要教师根据自己班的实际情况,自己创设贴近学生的实际生活的具体情境,拉近学生与数学知识之间的距离,激活学生熟悉的生活经历,激发学生自主探索的兴趣,感受估算与生活的关系,体验估算对解决问题的作用与意义。
二、强化估算训练,培养估算习惯。
估算作为《课课程标准》所确定的要加强的领域,作为一种计算方法,作为学生应具有的基本技能之一,每个人随时都有可能要用上估计数量、进行估算。因此,很有必要使学生养成良好的估算习惯。这就要求在教学中,要倡导学生在解决问题时、在计算时,随时运用估算的方法,进行估算。以确定解决问题的大致范围,用来估计计算的结果。教学过程中要使学生形成良好的估算习惯,就要在每一课时中适时地运用估算,使之成为学生良好学习习惯的一部分。
养成良好估算习惯,一要培养学生有估算兴趣 :学生的学习兴趣是打开知识之门的第一把金钥匙。学生有了学习兴趣,教师加以引导,学生的热情就尤如火山喷发之势空前高涨。在三年级数学上册,有《克、千克、吨的认识》、《两三位数除以一位数》、《两位数乘两位数》及《长方形和正方形的面积》,这四个单元都要用估算来辅助学生对知识的理解和渗透。所以在教学中,经常渗透估算思想精心设计问题,激发学生思考,引导学生学会估算。我在教面积时,先出示准备题:在下列( )里填平方分米或平方米
1、数学课本封面大约6( )
2、教室的地面大约60( )
3、教室黑板的面积大约6( )
有的学生填出了数学课本大约 6平方米,6平方米有多大,让学生估测后,全班同学哄堂大笑,顿时学生的学习兴趣提高了,在轻松愉快的气氛中完成任务了例题教学。
养成良好估算习惯,二要结合计算经常运用:运用估算去检验解决问题是否合理、计算是否正确是经常要采用的方法。应用一:学生练习时出现的,小明的身高是2米40厘米;四年级一班人数为48.5人;一列火车的速度是每小时10千米等等。这时教师要及时引导学生去估计和判断,这样的结果是脱离生活实际的,思维方式或计算过程已经出现了错误,需要重新检验解题的方法或运算过程。应用二:运用计算知识的规律进行结果的估算。在下列式题计算后,你能迅速估计结果是否正确吗?56-28=84错误,(将减法看作加法进行计算了)356+249=505错误,(356+200就等于556结果肯定错误)。要求学生在平时还要善于发现和掌握一些规律,并能运用这些规律审视计算结果。应用三:运用估算确定商的位数;直接......>>

问题四:估算怎么算 30×9

问题五:怎样正确把握估算教学 估算是数学计算的重要组成部分,也是计算策略的一种。《数学课程标准》明确指出:“具有估算能力能使人对数量及时间和空间等有整体性、全面性和概括性的认识。课标对不同学段的估算教学也提出了明确的目标:“能估计运算的结果,并对估算的合理性做出解释;能结合具体情况进行估算,并解释估算的过程;在解决具体问题的过程中,能选择合适的估算方法,养成估算的习惯。
在教学估算时,首先培养学生估算兴趣。上课时老师问:“同学们想不想知道我们学校多少名学生?”“想!”“你们想用什么方法知道呢?”“算一算不就知道了。”学生不以为然。教师告诉学生每个班级的人数,学生一看6个班级人数相加,都撅起了嘴,我趁势告诉学生:“我有一个简便的方法,能快速的知道答案。”我用估算算出结果,告诉学生大约有多少人。“你们想不想学习这种方法?”“想!”学生跃跃欲试,激发了学生的求知欲望和学习兴趣;其次,让学生掌握估算技巧。教学中教师可以就知识的特点去多角度的挖掘估算的内容和技巧,灵活的掌握“四舍五入”求近似数的方法,例如在计算过程中,像125×79这一题,学生单纯用“四舍五入”法把算式写成130× 80去计算,或写成100×80,125×80去计算,在这种情况下,教师要适时引导从中择优而用,如果在现实问题情境中,选择125×80最合适,而在一般的算式估算中,选择100×80估算最简便。由此可看出,在教学中,教师要引导学生,联系教材与生活实际掌握一些估算方法,从而能够根据实际问题选择和使用合适的估算技巧,同时利用估算也能检验自己的计算是否正确。第三,引导学生在练习中总结估算经验。估算能力并不是一时就能培养起来的,引导学生进行估算,需要我们经常运用估算,检验计算是否准确,熟能生巧,在不知不觉中学生就能掌握估算原理

问题六:估算498- 303怎么算 估算498- 303=500-300=200

问题七:如何计算完工估算EAC? 计算EAC最简单的想法,是用截止目前的成本AC加上未完成活动还需的花费ETC(完工尚需估算),即EAC=AC +ETC。但实际考试时一般不用这个公式,而是要分具体情况对待。1、在原有BAC完全不准确时,需要重新估算每个未完成活动的成本,然后向上汇总到ETC,所以EAC=AC+重新估算的ETC。2、由于重新算ETC代价太大,因此实际项目或考试中,计算EAC通常还是使用BAC,但要考虑两种情况第一种情况,也是考试中最常见的情况,就是到现在为止成本与BAC相比出现了偏差,如果题目没有特殊说明,这种偏差会一直持续到项目最后,所以计算完工估算EAC时按比例除以CPI就可以,即EAC=BAC/CPI第二种情况,题目里会说成本到现在为止与BAC相比出现了偏差,但这个偏差是前一段时间的偶然偏差,今后不会再有了(比如,做计划时安排1个初级程序员在项目上工作,BAC也是按此计算出来的,但前2个月初级程序员有事请假,临时使用高级程序员做同样的工作,导致一定成本偏差,第3个月初级程序员又回来工作了),所以计算EAC时只需要在原有BAC基础上减去前期的成本偏差CV就可以了,即EAC=BAC-CV,PMBOK上写的是EAC=AC+BAC-EV,一样的。3、还有一种计算EAC的情况是,到现在为止CPI和SPI都不好,领导还要求你按原有进度完成,公式就是PMBOK185页最上面的。最后提示一下,为了应付考试,只要了解使用除法和减法的两种情况就行,实在不理解就只记除法公式。

问题八:498加303估算怎样算 500+300
采纳 谢谢

问题九:身价是怎么计算的 你是说好友买卖的身价计算吗?身价是指被买卖后自己的价值(初始身价为500)。 身价=上一次身价+主人收益+奴隶收益+税收(第一次例外)。 其中,上一次身价+主人收益,归原主人所有;奴隶收益归奴隶所有,税收回归系统。具体规则如下: 上一次身价 N 当N3000时(女) 当N>2500时(男) 主人收益 7倍交易税 最小值105 最大值210 最大值175 奴隶收益 2倍交易税 最小值30 最大值60 最大值50 交易税 N的1% 最小值15 最大值30 最大值25 其中,交易税四舍五入,如身价1840,交易税即为18;身价1850,交易税即19。 1、 每被买一次就去讨好主人 这样你就不仅可以提高身价还可以增加现金了(讨好主人,只能增加现金,不能提高身价的。)2、越下面的折磨方式有时候打工时间越长(打工时间是随机的,没有说越下面越长,只是下面的比如裸奔每小时40比洗厕所30多10块,特别的是派去学习充电,只赚不亏每小时42。)好友买卖中还有卖道具卡 如果有需要你可以买你需要的道具帮助你哦(提问者问的是如何提高身价,但是道具卡,目前还没有可以提高身价的,只有加减现金的)。好友买卖一天长1150身价的方法: 通过、上面的表格 我们就可以看到挖了坑活埋和饿了3天3夜对奴隶来说都会长身价和跌身价. 这样我们可以明白让自己号码身价快速长就和这个有关系。 没错,一天长1150身价就是这样出来的。 具体步骤就是:找经常买自己的人和他商量,或者是自己的小号当买过多次后就会出现上面的折磨方式。一天开始的时候就拿去折磨(埋或者是饿),然后交易两次在饿或者是埋两次。这样身价就会加450或者300。 另外卖两次后身价系统自动会加500(这个是对于后面高身价后来说,前面两次是300。但是我想买你的人已经达到后面的折磨了身价一般来说都有好几千了)最后就上一命运卡了。目前最高是加200。 所以一天身价可以加:450+560+200=1210 嘿嘿,简单吧,高身价就是这么出来的. 我只把自己的号码拿去试了饿3天3夜的,最高当天加了900身价的,结果最后一次饿又跌了100。所以说目前我一天最高身价是一天长800,长了两天。过年时间在线时间少,也没有去饿了... 活埋是有点规律的,凭我多年经验下面我来介绍几种常见的! ①1+1制,就是第1次活埋涨(降),第2次就降(涨)这种是最常见的情况,而且第一次活埋涨的几率涨的机会有70%,所以我一般第一次就活埋自己的大号,当然还有30%几率是降的哦!稳当点还是先埋小号吧!‘出现几率40%’ ②2+2制,跟1+1制一样就是2连涨(降),2连降(涨),‘出现几率25%’ ③1+1后狂涨(降)制,就是连续出现两次出现1+1制后,后面连续涨(降)2-6次,涨出现的几率是80%,但是也有20%降的几率哦!),‘出现几率15%’ ④人品爆发制,这种是最郁闷的就是连续出现3-8次涨或降,我最爽的一次连续埋自己不同好友8次连续涨8次,最悲哀的一次就是连降6次!‘出现几率10%’ ⑤杂乱制,这种就是不按上面的3种制规律来,你认为它涨的时候它降,你认为它降的时候它却涨了,这种就凭人品了哦! 总:当然不同的时间也有可能影响几率,我一般是在凌晨12点到12点10分活埋自己,因为这段时间是腾讯服务器交接时间,这段时间最好了,因为这段时间出现1+1制是最频繁的哦。 身价增加速度说明: 身价在3000以下者,2次正常买卖、一天增加300的身价。 身价在3000以上者,2次正常买卖、......>>

问题十:估算是什么?怎样估算? 一、什么是估算、怎么进行估算?
什么是估算?所谓的估算就是大致推算。估算有三种情况:一是推算最大值,二是推算最小值,三是推算大约多少。怎么估算呢?估算都要先对参加计算的数值取其近似值,把一个比较复杂的计算变成可以口算的简单计算,得到一个近似值,如:估算32×58,最大值:都按比原来大的整十数算,最大是40×60=2400;最小值:都按比原来小的整十数算,最小是30×50=1500;约等于多少:用“四舍五入法”取接近的数算,大约在30×60=1800左右。
二、估算比精确计算容易算吗?
郸有人认为:估算都是把复杂的计算变成可以口算的简单计算,所以估算比笔算容易得多。估算真的比精确计算容易吗?我们不妨从以下两个方面来分析:
⑴思维过程:所有的笔算都有其复杂的算理,学生学习笔算时都是先进行复杂的思维分析、逻辑推理,然后对计算过程进行比较、分析、归纳得出计算的法则,计算过程中的复杂的思维活动就是计算的算理,是计算的依据,而计算法则是简约了复杂的思维活动的按一定程序演算的程式化的操作方法,所以在笔算过程中不再思考每步计算的道理,这样大大降低了思维难度、减轻了思维强度,只要进行一定量的训练就能达到正确、迅速计算的水平,所以在笔算过程中没有复杂的思维活动。而估算就不同了,所有的思维过程都不可简约,必须一步一步地思考和推理,如:估算32×58,先思考:32接近几十、记忆30,再思考:58接近几十、再记忆60,接着提取第一个记忆信息30,再思考:3×6=18、30和60末尾一共有2个0、所以在18后面添2个0得1800,由于30比32小、60比58大,所以1800不是最大值也不是最小值,得数应当在1800左右。从思维强度看估算要经历多次思考、多次记忆、提取信息、计算、比较、判断等一系列的思维活动,所以估算要比笔算的思维难度大。
⑵工作记忆:工作记忆属短时记忆,是一短暂时刻的知觉。心理学研究表明:成人的工作记忆只能记住大约5~9个独立的信息单位,儿童的工作记忆的信息量更少。由于用竖式计算是每算一步就写一个数字,头脑里只要记住“进几”、“是否退1”和“几十几加几”,工作记忆的信息一般只有一、两个,所以在计算过程中工作记忆的信息量很少。但是估算就不一样了:先要思考每个数的近似数是多少、记忆近似数,取提记忆里的相关信息,再计算,因此头脑里记忆的信息量要比竖式计算多得多,甚至会超出小学生的记忆能力,所以估算要比笔算难度大。

F. 小学数学中的估算是怎么估算的

只要是1-5的就舍0,6-9就进1。219四舍五入就是200。247四舍五入就是250。

四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一。

假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。这也是我们使用这种方法为基本保留法的原因。

在应用科学计算机进行施工运算时,常遇到一种情形:在答案的整数左边,有时连着好几个小数点数字 。如:小边255 除大边1005=tan0.2537313。

类似这种情形,如果作为参考用的tan值,经常带着这些小数点进行大小边计算,将显得繁琐。因此,为适当地去除类似小数点,又不影响实际尺寸的准确性,我在这里介绍数学 中的四舍五入计算法。

通常,木工所接触的制作图,都采用公制,且以毫米(mm)为单位,制作的面积从几十毫米到十多二十米不等,只要配合实际尺寸,对小数点作适当的删除,又能使误差不超过一 毫米,就应该施行四舍五入法.应该在哪一位置施行四舍五入呢?

以毫米为单位来说,假如它在第三位,我们就在第四位作四舍五入,先看第四位:如果是4或者比四小,就把它舍去;如果它是5或者比五大,也把它舍去,但要向它的左边单位上进1,这种方法就叫四舍五入法。

再举上面的例子,用tan值乘大边,以便求出小边值。假设tan值不变,大边值改为3000,这时,以毫米为单位来算,它就在第四位,我们就取tan值小数点后的四位数作为运算值就够了。

第五位是3,因为小于4,所以将它舍去,即:0.2537乘 3000=761.1,答案的小数点这时小于1mm应把它删去,只取761mm。

但是在四舍五入中,舍去的几率有九分之四,而进一的几率有九分之五,两者不等。故有“四舍六入”的说法,在这之中,若是5需舍入,若前一位数是奇数,则进一,若是偶数,则去尾。

G. 数学估算法有几种方法

1、去尾法。即把每个数的尾数去掉,取整十或整百数进行计算。东方旅行社“十一”期间组织了几个旅游团,情况是:丽江524人,黄山208人,长城602人,九寨沟310人,峨眉山219人,估计该旅行社“十一”
期间共接待多少人。把尾数去掉,取整百数相加,得到524+208+602+310+219≈500+200+600+300+20=1800(人)。
2、进一法。即在每个数的最高位上加1,取整十整百数进行计算。如:28+15+7+24≈30+20+10+30=90。
3、四舍五入法。即尾数小于或等于4的舍去,等于或大于5的便入进去,取整十或整百数进行计算。如,“苹果每千克4。20元,1。8千克苹果应付多少元”?采用估算则为4。2×1。8≈4×2=8(元)。
4、凑十法。即把相关的数凑起来接近10的先相加。如17+8+12+24=(17+12)+(8+24)≈30+30=60。
例 :一套车票和门票 49 元,四年级一共需要 104 套票,需要准备多少钱呢?
方法一:49×104≈5000(元) 50*100
方法二:49×104≈4500(元) 45 *100
方法三:49×104≈5500(元) 50 *110
方法四:49×104≈5250(元) 50 *105 ……
第一种估算方法,因为把 49 看成是 50,把 104 看成 100,50×100 等于5000,计算很方便.
第三种估算方法,因为把 49 看成是 50,把 104 看成 110,两个数都看大了,这样估算出来的结果 50×110 等于 5500,肯定大于 49×104 的结果,还有多余的一点钱,可以防止有什么意外发生.
第四种估算方法,因为把 49 看成是 50,把 104 看成 105,两个数都看大了一点点,这样估算出来的结果 50×105 等于 5250,与准确值很接近。我认为第二种方法不好, ,因为把 49 看成是 45,把 104 看成 100,两个数都看小了,这样估算出来的结果 45×100 等于 4500,如果带 4500 元钱肯定不够。

H. 举例说说怎么估算

所谓的估算,用到我们的数学当中,其实就是求一个近似数,比如说现在的小数点是1.352那么算出来的近似数就是约等于1。

I. 小学数学中的估算是怎么做的

小学估算一般遵循四舍五入原则。

举例说明如下:

150+317,估算的过程是把150看成200,另外的317看成300,计算可得:150+317的估算结果为500。

再例如:700+651,700可以估算为1000,651可以估算为700,计算可得:700+651=1700。

(9)数学基础训练举例说说怎么估算扩展阅读:

四舍五入法与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。这也是我们使用这种方法为基本保留法的原因。

教师要重视估算,并把估算意识的培养作为重要的教学目标,为了培养学生的估算意识,作为教师的我们首先要重视估算教学,将估算意识的培养作为一个重要的教学目标。

在教学设计时,首先要考虑教学目标,如果把目标定位在做一些机械的训练,可能就会给学生形成一种错误的定势。我们要把培养学生的估算意识、近似意识,作为重要的教学目标来实施。 

数学虽然与我们的生活息息相关,小学生每天会接触到数学,但由于受以往数学精确性、严谨性的影响,教师一直很重视学生笔算的正确率和熟练度,学生主动估算的意识极为薄弱。新课程根据这一现状,在各个学段增设了不同层次的估算内容。

阅读全文

与数学基础训练举例说说怎么估算相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1401
沈阳初中的数学是什么版本的 浏览:1347
华为手机家人共享如何查看地理位置 浏览:1039
一氧化碳还原氧化铝化学方程式怎么配平 浏览:881
数学c什么意思是什么意思是什么 浏览:1405
中考初中地理如何补 浏览:1296
360浏览器历史在哪里下载迅雷下载 浏览:698
数学奥数卡怎么办 浏览:1384
如何回答地理是什么 浏览:1020
win7如何删除电脑文件浏览历史 浏览:1052
大学物理实验干什么用的到 浏览:1481
二年级上册数学框框怎么填 浏览:1696
西安瑞禧生物科技有限公司怎么样 浏览:962
武大的分析化学怎么样 浏览:1244
ige电化学发光偏高怎么办 浏览:1334
学而思初中英语和语文怎么样 浏览:1647
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1483
数学中的棱的意思是什么 浏览:1054