1. 抛物线对称轴公式是什么
对称轴公式x=-2a/b;
在数学中,抛物线是一个平面曲线,它是镜像对称的,并且当定向大致为U形(如果不同的方向,它仍然是抛物线)。它适用于几个表面上不同的数学描述中的任何一个,这些描述都可以被证明是完全相同的曲线。
抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。
(1)数学抛物线的对称轴怎么求扩展阅读:
垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。与对称轴相交的抛物线上的点被称为“顶点”,并且是抛物线最锋利弯曲的点。沿着对称轴测量的顶点和焦点之间的距离是“焦距”。
“直线”是抛物线的平行线,并通过焦点。抛物线可以向上,向下,向左,向右或向另一个任意方向打开。任何抛物线都可以重新定位并重新定位,以适应任何其他抛物线 - 也就是说,所有抛物线都是几何相似的。
抛物线具有这样的性质,如果它们由反射光的材料制成,则平行于抛物线的对称轴行进并撞击其凹面的光被反射到其焦点,而不管抛物线在哪里发生反射。相反,从焦点处的点源产生的光被反射成平行(“准直”)光束,使抛物线平行于对称轴。声音和其他形式的能量也会产生相同的效果。这种反射性质是抛物线的许多实际应用的基础。
2. 抛物线的对称轴的求法
1、抛物线y=ax²+bx+c与x轴的交点,就是解方程ax²+bx+c=0的根,这个根就是抛物线与x轴交点的横坐标;
2、对称轴是x=-b/(2a),或者就是刚才的交点所成线段的垂直平分线。
请采纳。
3. 抛物线对称轴公式
对称轴是直线x=-b/(2a)
比如:a>0时,抛物线开口朝上,反之朝下;当然a=0是非常重要的一个点,因为a=0时,已不是抛物线而是直线;还可以令y=0时,就可以算出与x轴的交点横坐标。
^^y=ax^2+bx+c
=a(x^2+b/ax)+c
=a{[x^2+b/ax+(b/2a)^2]-(b/2a)^2}+c
=a(x+b/2a)^2+c-b^2/4a
顶点(-b/2a,(4ac-b^2)/4a)
对称轴x=-b/2a
(3)数学抛物线的对称轴怎么求扩展阅读:
抛物线定义:平面内与一个定点F和一条直线l的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线,定点F不在定直线上。它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0<e<1时为椭圆,当e>1时为双曲线。
4. 已知抛物线上的一对对称点求对称轴怎么求
抛物线对称轴与x轴平行时,对称轴为y=(y1+y2)/2;
抛物线对称轴与y轴平行时,对称轴为x=(x1+x2)/2;
抛物线对称轴不与坐标轴平行时,先求这对对称点的中点M(x0,y0) ,然后求两点所在直线的斜率(k),继而求出该直线法线的斜率(-1/k),最后用点法式求对称轴.
5. 抛物线对称轴怎么求
抛物线是个二次函数,在平面直角坐标系上,找到二次函数的顶点,向X轴做垂直,这就是二次函数(抛物线)的对称轴
把抛物线化成标准形式:ax^2+bx+c=0
他的对称轴公式是:x=-b/2a
6. 抛物线对称轴公式是什么
抛物线对称轴公式:x=-b/2a。
y=ax^2+bx+c
=a(x^2+b/ax)+c
=a{[x^2+b/ax+(b/2a)^2]-(b/2a)^2}+c
=a(x+b/2a)^2+c-b^2/4a
顶点(-b/2a,(4ac-b^2)/4a)
对称轴x=-b/2a
抛物线
具有这样的性质,如果它们由反射光的材料制成,则平行于抛物线的对称轴行进并撞击其凹面的光被反射到其焦点,而不管抛物线在哪里发生反射。相反,从焦点处的点源产生的光被反射成平行(“准直”)光束,使抛物线平行于对称轴。声音和其他形式的能量也会产生相同的效果。这种反射性质是抛物线的许多实际应用的基础。
7. 抛物线的对称轴怎么求
抛物线对称轴公式是x=-b/2a
~回答完毕~
~\(^o^)/~祝学习进步~~~
8. 抛物线对称轴公式是
抛物线对称轴公式:x=-b/2a。
y=ax^2+bx+c
=a(x^2+b/ax)+c
=a{[x^2+b/ax+(b/2a)^2]-(b/2a)^2}+c
=a(x+b/2a)^2+c-b^2/4a
顶点(-b/2a,(4ac-b^2)/4a)
对称轴x=-b/2a
(8)数学抛物线的对称轴怎么求扩展阅读
抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。
垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。与对称轴相交的抛物线上的点被称为“顶点”,并且是抛物线最锋利弯曲的点。沿着对称轴测量的顶点和焦点之间的距离是“焦距”。 “直线”是抛物线的平行线,并通过焦点。
9. 求抛物线的对称轴
(-1,0),(3,0)是抛物线与x轴的交点,
(-1,0)与(3,0)所连线段的中点是(1,0),
对称轴经过点(1,0),
对称轴方程为x=1.
10. 抛物线的对称轴公式是什么
抛物线对称轴公式:x=-b/2a。垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。
y=ax²+bx+c
=a(x²+b/ax)+c
=a(x²+b/ax+b²/4a²)+c-b²/4a
=a(x+b/2a)²-(-4ac+b²)/(4a)
顶点(-b/2a,(4ac-b²)/4a)
对称轴x=-b/2a
在平面直角坐标系中作出二次函数y=ax1+bx+c的图像,可以看出,在没有特定定义域的二次函数图像是一条永无止境的抛物线。如果所画图形准确无误,那么二次函数图像将是由y=ax平移得到的。
二次函数图像是轴对称图形,对称轴为直线x=-b/2a。
对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。
特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0),是顶点的横坐标(即x=-b/2a)。
二次函数图像有一个顶点P,坐标为P(h,k)。
当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)1+k(a≠0)
h=-b/2a,k=(4ac-b²)/4a。
二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,二次函数图象向上开口;当a<0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小。